Ústav ÚstavKontakt KontaktMapa stránky Mapa stránkyPrivátna zóna Privátna zónaEnglish version English version
Slovensk� akad�mia vied (SAV)
Hlavná stránka
Kontakt
Organizačná štruktúra
História
- - - - - - -
Infraštruktúra
Pracovníci
Oddelenia
Knižnica
Spoločné pracoviská
- - - - - - -
Projekty
Vybrané výsledky
Publikácie a citácie
Výročné správy
- - - - - - -
Doktorandské štúdium
Pedagogická činnosť
Pracovné príležitosti
Zverejňovanie informácií
Ústav arrow Semináre arrow Seminár: Delayed entry in Cox proportional hazards model
Seminár: Delayed entry in Cox proportional hazards model

27.1.2015

Pozývame Vás na seminár z matematickej štatistiky, s názvom "Delayed entry in Cox proportional hazards model", ktorý sa uskutoční v stredu, 4. februára 2015, o 10:00 v Ústave merania SAV. Prednášať bude Mgr. Silvie Bělašková z Ústavu matematiky Fakulty aplikované informatiky, Univerzita Tomáše Bati ve Zlíně (UTB).

Delayed entry in Cox proportional hazards model

Silvie Bělašková and Eva Fišerová

Palacky University in Olomouc, Czech Republic
Tomas Bata University in Zlin, Czech Republic

One of the primary goals of analysis of time scale in medicine is the estimation of treatment effects based on observational studies. These studies are often based on incomplete observations and it requires special techniques for analysing. Base methods often used are survival analysis. Methods of survival analysis (e.g., Cox proportional hazards model) require that the event time be measured with respect to some origin time. The choice of origin time is substantively important because it implies that the risk of the event varies as a function of time since that origin. Ideally, the origin time is the same as the time at which observations begin, on the other hand, observations do not begin until some time after the origin time. These late entries are treated as left truncated data in the statistical literature. However, in actual situations, it may be possible that subjects with either extremely high, or extremely low risk enter the study after the time origin. There are three tests that are commonly used to test the hypothesis that a covariate has no effect. These are Wald test, the score test and the likelihood ratio test. The aim of our contribution is discussing accuracy of p-value of these tests in proportional hazards model. 

Keywords

Survival analysis, Cox proportional hazards model, time scale, missing data. 

References

  1. Cox D. R., Regression Models and Life Tables, Journal of the Royal Statistical Society, Series B,1972, 20, 187-220, with discussion.
  2. Cox D. R., Oakes D., Analysis of Survival Data, London: Chapman & Hall, 1984.
  3. Thibaut AC., Bénichou J., Choice of time-scale in Cox's model analysis of epidemiologic cohort data: a simulation study, Statistics in Medicine 2004 Dec 30; 23(24): 3803-20.
  4. Chalise P., Chicken E., McGee D., Time Scales in Epidemiological Analysis. An Empirical Comparison, Statistics in Medicine 2009; 00:1-13
  5. Griffin B. A., Anderson G., Shih R., Whitsel E., Use of Alternative Time Scales in Cox Proportional Hazard Models Implications for Time-Varying Environmental Exposures, Statistics in Medicine, v. 31, no. 27, Nov. 2012, p.3320-3327.
 
Measurement Science Review (on-line časopis)
Konferencie
Semináre
Aktuality