Projects

Hoang Vu Viet

Project selection:

National projects

MRCartilage – Automatic data evaluation tool from the longitudinal quantitative MRI studies of articular cartilage
Automatický softvérový nástroj na výhodnocovanie kvantitatívnych MRI štúdií artikulárných chrupaviek v čase
Program: SRDA
Duration: 1.7.2022 – 30.6.2026
Project leader: Ing. Dr. Szomolányi Pavol, (PhD.)
Annotation: The aim of the project is to design a comprehensive tool for automatic evaluation of human articular cartilage data from quantitative MRI. Data obtained from the Osteoarthritis Initiative database, and measured at Institute of Measurement Science and Medical University of Vienna will be segmented using an automated segmentation tool based on convolutional neural networks. The annotated data will then be registered on quantitative MRI data that will be available from the database (T2 and T1rho mapping, gagCEST, sodium MR) using automated or semiautomated tools developed within this project. The data obtained will be evaluated at multiple time points according to MR measurements that will be available. In addition to quantitative MR data, this will include volumetric data, cartilage thickness, and texture analysis of quantitative maps. Patient evaluation will be based on risk factor groups (transverse ligament rupture, meniscus rupture and menisectomy). The expected number of patients is approximately 4000 divided into individual groups in the ratio 40/30/30. The output of the project will be a compiled version of an automatic cartilage evaluation tool that will be available in a public source (such as website of Institute of Measurement).
Investigation of biomedical effects of low frequency and pulsed electromagnetic fields
Výskum biomedicínskych účinkov nízkofrekvenčných a pulzných elektromagnetických polí
Program: VEGA
Duration: 1.1.2022 – 31.12.2024
Project leader: Mgr. Teplan Michal, PhD.
Annotation: Although there is a persisting interest in both adverse and beneficial biological effects of electromagnetic fields(EMF), the unambiguous explanation of electromagnetic field influence on living structures is still lacking. For theimpact of low-frequency magnetic field (LF MF) experimental platform with monitoring of the cell growth curve based on impedance spectroscopy will test possible inhibition or stimulation dependent on the frequency and magnetic flux parameters. Effects of pulsed electric field (PEF) will be monitored by biological autoluminescence (BAL). Complexity measures will be utilized for ultrafast current recordings during the PEF application. For quantification of direct effects of PEF on microtubules (MT) and evaluation of kinesin molecule movement, advanced image processing methods will be developed. The relevance of this research area lies in theexploration of physical methods with possible contributions to diagnostics and therapy.