MRCartilage – Automatic data evaluation tool from the longitudinal quantitative MRI studies of articular cartilage | |
Automatický softvérový nástroj na výhodnocovanie kvantitatívnych MRI štúdií artikulárných chrupaviek v čase | |
Program: | SRDA |
Project ID: | APVV-21-0299 |
Duration: | 1.7.2022 – 30.6.2026 |
Project leader: | Ing. Dr. Szomolányi Pavol, (PhD.) |
Annotation: | The aim of the project is to design a comprehensive tool for automatic evaluation of human articular cartilage data from quantitative MRI. Data obtained from the Osteoarthritis Initiative database, and measured at Institute of Measurement Science and Medical University of Vienna will be segmented using an automated segmentation tool based on convolutional neural networks. The annotated data will then be registered on quantitative MRI data that will be available from the database (T2 and T1rho mapping, gagCEST, sodium MR) using automated or semiautomated tools developed within this project. The data obtained will be evaluated at multiple time points according to MR measurements that will be available. In addition to quantitative MR data, this will include volumetric data, cartilage thickness, and texture analysis of quantitative maps. Patient evaluation will be based on risk factor groups (transverse ligament rupture, meniscus rupture and menisectomy). The expected number of patients is approximately 4000 divided into individual groups in the ratio 40/30/30. The output of the project will be a compiled version of an automatic cartilage evaluation tool that will be available in a public source (such as website of Institute of Measurement). |
TInVR – Trustworthy human–robot and therapist–patient interaction in virtual reality | |
Dôveryhodná interakcia človek–robot a terapeut–pacient vo virtuálnej realite | |
Program: | SRDA |
Project ID: | APVV-21-0105 |
Duration: | 1.7.2022 – 30.6.2026 |
Project leader: | Ing. Mgr. Rosipal Roman, DrSc. |
Annotation: | We aim to study specific forms of social interaction using state-of-the-art technology – virtual reality (VR) which is motivated by its known benefits. The project has two main parts, human–robot interaction (HRI) and therapist–patient interaction (TPI). The interactions are enabled using head-mounted displays and controllers allowing the human to act in VR. We propose two research avenues going beyond the state-of-the-art in respective contexts. In HRI, we will develop scenarios allowing the humanoid robot to learn, understand and imitate human motor actions using flexible feedback. Next, we develop scenarios for testing and validating human trust in robot behavior based on multimodal signals. We will also investigate physical interaction with a humanoid robot NICO. In TPI with stroke patients, we develop a series of VR-based occupational therapy procedures for motor and cognitive impairment neurorehabilitation using an active and passive brain-computer interface, and we will validate these procedures. We expect observations from HRI experiments to be exploited in TPI. The proposed project is highly multidisciplinary, combining knowledge and research methods from psychology, social cognition, robotics, machine learning and neuroscience. We expect to identify features and mechanisms leading to trustworthy processes with a human in the loop, as a precondition of success, be it a collaborative task or treatment in VR. |
MATHMER – Advanced mathematical and statistical methods for measurement and metrology | |
Pokročilé matematické a štatistické metódy pre meranie a metrológiu | |
Program: | SRDA |
Project ID: | APVV-21-0216 |
Duration: | 1.7.2022 – 31.12.2025 |
Project leader: | Doc. RNDr. Witkovský Viktor, CSc. |
Annotation: | Mathematical models and statistical methods for analysing measurement data, including the correct determination of measurement uncertainty, are key to expressing the reliability of measurements, which is a prerequisite for progress in science, industry, health, the environment and society in general. The aim of the project is to build on traditional metrological approaches and develop new alternative mathematical and statistical methods for modelling and analysing measurement data for technical and biomedical applications. The originality of the project lies in the application of modern mathematical methods for modelling and detecting dependence and causality, as well as statistical models, methods and algorithms for determining measurement uncertainty using advanced probabilistic and computational methods based on the use of the characteristic function approach (CFA). In contrast to traditional approximation and simulation methods, the proposed methods allow working with complex and at the same time accurate probabilistic measurement models and analytical methods. Particular emphasis is placed on stochastic methods for combining information from different independent sources, on modelling dependence and causality in dynamic processes, on accurate methods for determining the probability distribution of values that can be reasonably attributed to the measured quantity based on a combination of measurement results and expert knowledge, and on the development of methods for comparative calibration, including the probabilistic representation of measurement results with a calibrated instrument. An important part of the project is the development of advanced numerical methods and efficient algorithms for calculating complex probability distributions by combining and inverting characteristic functions. These methods are widely applicable in various fields of measurement and metrology. In this project they are applied to the calibration of temperature and pressure sensors. |
ECMeNaM – Efficient computation methods for nanoscale material characterization | |
Efektívne výpočtové metódy pre charakterizáciu materiálov v nano mierke | |
Program: | SRDA |
Project ID: | SK-CZ-RD-21-0109 |
Duration: | 1.7.2022 – 30.6.2025 |
Project leader: | Doc. RNDr. Witkovský Viktor, CSc. |
Annotation: | The aim of the project is to design and implement effective calculation methods for evaluating the results of measuring the mechanical properties of materials at the nanoscale using instrumented indentation methods (IIT) and atomic force microscopy (AFM). Both of these methods are able to provide highly localized information on the mechanical properties of the material, such as Young\’s modulus of elasticity (both methods), hardness (IIT method), or point-to-surface adhesion (AFM method). The principle is the analysis of the recording of the position of the measuring tip and the force interaction between the tip and the sample surface. The determination of the resulting values on the basis of data recorded by the instrument in both of these methods is based on non-trivial mathematical-statistical methods and calculation procedures working with data subjected to relatively high uncertainty or random noise, where it is also necessary to quantify the uncertainty of the measurement result. Both of these methods work with data of a similar nature, but each has certain specifics. The results obtained for IIT can thus serve as a reference for AFM. The project partners are the Czech Metrology Ins titute (CMI is the national metrology institute of the Czech Republic with top infrastructure in the field), the Institute of Measurement Science SAS (IMS SAS), and the Mathematical Institute SAS (MI SAS), which are academic institutions with extensive experience in basic research and applications of mathematics statistics in the field of measurement and metrology. This combination of partners brings a natural synergy and a combination of the necessary competencies for this |