Projects

     
Selection of projects according to criteria:
Project status:
Project type:
Program:
Project leader:
   
 
ReHaB – Towards an ecologically valid symbiosis of BCI and head-mounted VR displays: focus on collaborative post-stroke neurorehabilitation
Smerovanie k spoľahlivej a uživateľsky prijateľnej symbióze BCI a VR: zameranie na kolaboratívnu neurorehabilitáciu po cievnej mozgovej príhode
Program: ERANET
Project ID: ERA-net CHIST ERA IV
Duration: 1.1.2022 – 31.12.2024
Project leader: Ing. Mgr. Rosipal Roman, DrSc.
Annotation: A growing body of evidence suggests that integrated technologies of brain-computer interfaces (BCI) and virtual reality (VR) environments provide a flexible platform for a series of neurorehabilitation therapies, including significant post-stroke motor recovery and cognitive-behavioral therapy. When immersed in such an environment, the subject\’s perceptual level of social interaction is often impaired due to the sub-optimal quality of the interface lacking the social aspect of human interactions.The project proposes a user-friendly wearable low-power smart BCI system with an ecologically valid VR environment in which both the patient and therapist collaboratively interact via their person-specific avatar representations. On the one hand, the patient voluntarily, and in a self-paced manner, manages their activity in the environment and interacts with the therapist via a BCI-driven mental imagery process. This process is computed and rendered in real-time on an energy-efficient wearable device. On the other hand, the therapist\’s unlimited motor and communication skills allow him to fully control the environment. Thus, the VR environment may be flexibly modified by the therapist allowing for different occupational therapy scenarios to be created and selected following the patient\’s recovery needs, mental states, and instantaneous responses.
PARQ – Sudden cardiac arrest prediction and resuscitation network: Improving the quality of care
Predikcia náhlej srdcovej zástavy a systém resuscitácie: Zvýšenie kvality zdravotnej starostlivosti
Program: COST
Project ID: CA19137
Duration: 26.10.2020 – 25.10.2024
Project leader: Ing. Švehlíková Jana, PhD.
Annotation: Sudden cardiac arrest (SCA) causes 2 million deaths each year in Europe alone. Since SCA strikes unexpectedly and is lethal within minutes if untreated, solving this problem requires (1) recognizing individuals at risk and designing preventive strategies, (2) providing timely and effective treatment. Because SCA mostly occurs out-of-hospital, SCA victims rely on first-response treatment provided by citizens, firefighters and emergency medical services. There are large regional differences in SCA survival rates across Europe (1-30%). This suggests that regional differences in individual risk prediction, prevention and treatment have a major impact on the chance to survive. To improve survival rates across Europe it is imperative to study: 1) inherited, acquired, and environmental risk factors of SCA across European regions; 2) regional differences in preventive measures and first-response treatment strategies and their effectiveness. The PARQ Action will facilitate this research by forming a pan-European network of excellence in SCA and resuscitation science. This network includes investigators from different disciplines including cardiology, molecular biology, resuscitation science, emergency medicine, general practice and health economics. The main objectives of the Action are to promote development of standards for collection of clinical data and biological samples and to harmonize data analysis. This will aid in development of risk prediction models based on inherited, acquired and environmental risks. The PARQ action will focus on European differences in first-response treatment and develop guidelines. In summary, the PARQ Action investigators will enable breakthrough developments to decrease the incidence of SCA and improve survival, while reducing the vast regional European differences in survival rates.
Project website: https://www.cost.eu/actions/CA19137
SP4LIFE – Smart Patch for Life Support Systems
Inteligentná náplasť pre systémy na udržanie života
Program: NATO
Project ID: NATO SPS G5825
Duration: 10.3.2021 – 10.3.2024
Project leader: Doc. Ing. Tyšler Milan, CSc.
Annotation: Wearable real-time systems collecting and smartly analysing information on respiration, heartbeat, SpO2, blood pressure and body temperature could help medical personnel adopting most suitable countermeasure in case of highly stressful situations in military and civil scenarios as a result of terrorist attacks, IEDs’ or rescue operations. The system gives an alert if the health status of a person is changed to prevent overlook of critical health changes. We propose design and development of a patch-like device prototypes and methodology enabling continuous evaluation of personnel or victims’ vital parameters, using Artificial Intelligence to create software capable of real-time diagnostics and rapid countermeasures’ selection.
Project website: https://www.um.sav.sk/SP4LIFE
ClinECGI – Performance Evaluation of Noninvasive Electrocardiographic lmaging for the Localization of Premature Ventricular Contraction from Clinical Data
Vyhodnotenie neinvazívneho elektrokardiografického zobrazovania pre lokalizáciu predčasnej komorovej kontrakcie z klinických dát
Program: JRP
Project ID: JRP SAV-TUBITAK 536057
Duration: 1.2.2021 – 1.2.2024
Project leader: Ing. Švehlíková Jana, PhD.
Annotation: The project is focused on advanced noninvasive methods for the localization of the origin of an undesired ventricular activity known as the extrasystoles. The treatment of these arrhythmias involves an invasive procedure using an endocardial mapping, during which such origins are eliminated by the application of radiofrequency energy. The methods proposed in the project aim to shorten this time demanding invasive procedure, by guiding the clinicians to the correct regions of the arrhythmia origin.
MU training – Measurement uncertainty training – MATHMET project to improve quality, efficiency and dissemination of measurement uncertainty training
Tréning v oblasti neistôt merania – MATHMET projekt na zlepšenie kvality, efektívnosti a šírenia zručností v oblasti analýzy neistoty výsledkov merania
Program: Multilateral – other
Project ID: MATHMET-MUT-2021
Duration: 1.10.2021 – 30.9.2023
Project leader: Doc. RNDr. Witkovský Viktor, CSc.
Annotation: Measurement uncertainty is a key quality parameter to express the reliability of measurements and an understanding of measurement uncertainty is often a precondition for advances in science, industry, health, environment, and society in general. However, there is a documented need for a better understanding of measurement uncertainty and its evaluation in many communities and recently this need was restated pointing to the importance of training on measurement uncertainty. Many metrology institutes, universities, national accreditation bodies, authorities in legal metrology, and others offer training on measurement uncertainty. They do so independently, and there is no community of teachers for exchanging expertise or to focus attention. There is no single contact point in Europe, which coordinates efforts, prioritizes needs, or provides an overview of suitable courses and material.Based on a broad consortium this project will improve the quality, efficiency, and dissemination of measurement uncertainty training. The activity will (1) develop new material for measurement uncertainty training and (2) establish an active community for those involved in measurement uncertainty training. In the EU, the European Metrology Network MATHMET is well-suited to host such an activity.
Project website: https://www.euramet.org/european-metrology-networks/mathmet/?L=0
European network for advancing Electromagnetic hyperthermic medical technologies.
Európska sieť pre pokrok v elektromagnetických hypertermických medicínskych technológiách
Program: COST
Project ID: COST action CA17115
Duration: 4.9.2018 – 3.3.2023
Project leader: Mgr. Teplan Michal, PhD.
Annotation: Electromagnetic (EM) hyperthermic technologies hold great potential in the treatment of diseases, especially for cancers that are resistant to standard regimens. These technologies modify tissue temperature: hyperthermia heats the diseased tissue to make it susceptible to treatments, and ablation heats the tissue until it is destroyed. Hyperthermia is particularly effective in treatment of cervical and breast cancer, head and neck cancers, sarcoma in adults, and germ cell tumours in children; while radiofrequency and microwave ablation offer promise for treating liver, kidney, and lung cancers.Overall, these techniques have shown significant potential and there is substantial opportunity to solidify their use clinically and to apply them to a wider range of medical conditions. However, underpinning the development of these techniques is the need for accurate knowledge of the dielectric and thermal properties of tissues, which provide the foundation for these technologies and de-risk the technical challenge before commercialization. Furthermore, contributing to the stagnant market of EM hyperthermic medical devices is the fact that, often researchers working on the development of medical technologies are not fully aware of, and not trained to address, the clinical and commercialisation challenges facing novel medical devices. To address these challenges, the MyWAVE Action takes a holistic approach by bringing together key players in the field of dielectric spectroscopy, translational research, and medical professionals. Conjoining these varied communities into one collaborative network is critical to advance the design, development, and commercialisation of EM hyperthermic technologies, so that they can reach patients faster and improve treatment outcomes.
Project website: www.cost.eu/actions/CA17115