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If data are generated by a system with a d-dimensional attractor, then Takens’ theorem guarantees that reconstruction that is
diffeomorphic to the original attractor can be built from the single time series in (2d + 1)-dimensional phase space. However,
under certain conditions, reconstruction is possible even in a space of smaller dimension. This topic is very important because
the size of the reconstruction space relates to the effectiveness of the whole subsequent analysis. In this paper, the false nearest
neighbour (FNN) methods are revisited to estimate the optimum embedding parameters and the most appropriate observables for
state space reconstruction. A modification of the false nearest neighbour method is introduced. The findings contribute to evidence
that the length of the embedding time window (TW) is more important than the reconstruction delay time and the embedding
dimension (ED) separately. Moreover, if several time series of the same system are observed, the choice of the one that is used for

the reconstruction could also be critical. The results are demonstrated on two chaotic benchmark systems.

1. Introduction

State space reconstruction is usually an unavoidable step
before the analysis of a time series in terms of dynamical
systems theory. Suppose that we have data (a single time
series) that was presumably generated by a d-dimensional
deterministic dynamical system. Then, the usual choice for
a reconstruction is a matrix of time shifts of one variable,
as supported by Takens theorem from 1981 [1]. Alternate
methods of reconstruction, such as derivatives or linearly
independent coordinates found by principal component
analysis, can be seen as transformations on time-shift vectors.
By one of these embedding procedures, a new state space is
created that is (in the sense of diffeomorphism) equivalent
to the original state space. The reconstruction preserves
relevant geometrical and dynamical invariants, such as the
fractal dimensions of the attractor, the entropies, or the
Lyapunov exponents (which measure the sensitivity to the
initial conditions).

Reconstructing requires decision making regarding the
size of the space of the reconstruction, the value of the time

shifts between the coordinates, and another important—
although often overlooked—aspect: which one or which
combination of observables (if several of them are available)
are to be used for the reconstruction?

Choice of the Time Delay. The time-delayed versions
[y(t), y(t — 1), y(t — 27),..., y(t — 2m7)] of the known
observable y(t) form an embedding from the original
m-dimensional manifold into R*™' (where 2m + 1 is
the embedding dimension and 7 is the time lag between
consecutive states) [1, 2]. Theoretically, for noise-free data
of unlimited length, the existence of a diffeomorphism
between the original attractor and the reconstructed image is
guaranteed for almost any choice of delay and a sufficiently
high embedding dimension. In practice, however, the
experimental time series can be short and noisy. Then, the
quality of the reconstruction can vary depending on the
choices for the time delay and the embedding dimension.
If the delay is too small, then each coordinate is almost the
same, and the reconstructed trajectories resemble a line (the
phenomenon known as redundancy). Geometrically, this
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arrangement means that there are trajectory intersections
at a small angle. In the case of noisy measurements, this
circumstance makes the separation of trajectories impossible.
On the other hand, if the delay is too large, then due to the
sensitivity of the chaotic motion, the coordinates appear
to be independent, and the reconstructed state portrait
looks random or unnecessarily complicated (a phenomenon
known as irrelevance). Such an extremely inappropriate
choices for the delay can be detected at first sight in a
2-dimensional delayed plot.

To select the embedding parameters optimally, many
competing approaches have been proposed. Most of them
are based on heuristic reasoning rather than mathematically
rigorous criteria. The simple idea is to unfold the reconstruc-
tion of the trajectories sufficiently to avoid self-crossing and
extreme closeness of distinct parts. In particular, the delay
that is used for reconstruction is often given by the first zero
of the autocorrelation function or as the first minimum of
the mutual information between the delayed components
[3]. By using the first instead of the absolute minimum of
the mutual information, the selection is biased toward small
delays, to avoid irrelevance. The benefit of using the mutual
information, as opposed to the autocorrelation function, is
that the nonlinear character of the data is accounted for.

One method to avoid selecting the time delay is to use
derivatives instead of delayed coordinates. In addition to
the fact that this approach makes the embedding procedure
delay-free, the derivative coordinates offer some further
advantages. First, in some applications, they enable a clear
physical interpretation. Moreover, the prediction results that
are obtained in differential phase space could be better than in
the time-delay phase space [4]. However, the largest problem
is that the numerical estimate of the derivatives leads to
errors and deteriorates quickly when calculating higher order
derivatives. Any noise in the data would make the situation
even worse [5].

Choice of the Embedding Dimension. In addition, to the time
shift, you must choose a proper embedding dimension to be
able to reconstruct the state portrait. The theorem of Whitney
guarantees the possibility of embedding any m-dimensional
smooth manifold into (21 + 1)-dimensional Euclidean space
[6]. Sauer et al. generalised the theorem to fractal objects.
They have proved that, under some conditions regarding
periodic orbits and the measurement function, almost every
C' map from the fractal A to RY with d > 2D, forms an
embedding, whereby D, is the box-counting dimension of A
[7]. This finding means that it is not the size m of the manifold
of the original attractor that determines the minimal embed-
ding dimension but only the fractal dimension D 4. However,
even 2D, represents only an upper limit—the embedding
theorem does not rule out an embedding dimension that is
lower than 2D 4.

Sometimes, the required size of the reconstruction space
can be smaller because of the less demanding goal of the
investigation. For example, for the numerical calculation of
the correlation dimension of the attractor A, any dimension
above the box-counting dimension of A is sufficient [8].
Of course, such cases do not guarantee that the attractor
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is mapped one-to-one; however, that is not necessary for
dimension estimation.

On the other hand, if the objective is to model or predict
the future behaviour, then self-intersections are unacceptable
and a reconstruction of a dimension as high as d > 2D,
might be needed. However, in favourable cases, embeddings
into lower than 2D ,-dimensional spaces could still exist. It
is definitely worthwhile to explore such possibilities because,
in practice, it is advantageous to construct embeddings of
the lowest possible dimension (ideally of the original system’s
dimension). What are the favourable cases and how not to
miss them are now a subject of research. For example, Cross
and Gilmore contributed to the issue when they analysed
differential mappings of the rotationally equivariant Lorenz
dynamical system [9]. They showed that, while the differential
reconstruction based on the x coordinate is an embedding
of the attractor in three dimensions, it does not yield an
embedding of the entire manifold; that is, the projection of
the manifold into R® possesses singularities. However, it is
possible to embed the manifold into a 3-dimensional twisted
submanifold of R*. Then, not only diffeomorphism invariants
(as fractal dimensions or Lyapunov exponents) but also
information about the mechanism responsible for generating
the chaotic behaviour is preserved. The two objects are
actually isotopic (smoothly deformable into each other) in R*.
Nonisotopic embeddings provide distinct representations of
the original state space because one might not be deformed
into another without self-intersection. For m > 2, any two
embeddings of an m-manifold into R¥™1 are isotopic [10].
This result is known as an isotopy version of the strong
Whitney embedding theorem. Moreover, Cross and Gilmore
have shown that for 3-dimensional systems (if genus g = 1
and g > 3), all of the representations become equivalent for
R’ already [11]. This result is, however, limited to attractors
that exist in a 3-dimensional manifold because the considered
topological indices are restricted to three dimensions. Very
little is known about lower than (2m + 1)-dimensional
embeddings of dynamical systems with m > 3.

The choice of the minimal possible embedding dimension
when the number of degrees of freedom of the original system
is unknown and is not easy. A space of an undervalued
dimensionality does not unfold the trajectories, while an
unnecessarily large embedding space can result in overfitting.
Typically, the search for the proper dimension is based
on a step-by-step expansion of the reconstruction space
while simultaneously following some proper diffeomorphism
invariant that is expected to stay constant after reaching
the sufficient embedding dimension. As examples of such
invariants, the correlation dimension, largest Lyapunov expo-
nent, predictability indices, or percentage of false nearest
neighbours have previously been mentioned. In the long run,
the various options have been superseded in practice by the
false near neighbour test [12].

Choice of the Observable. When considering the Takens or
Sauer theorem, the variables of the system are assumed
to be in equal positions regarding their use for the state
space reconstruction. For example, the theorems guarantee
that a 5-dimensional delay reconstruction from any variable
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(x, y, or z) of the Rossler system constitutes a diffeomor-
phism between the original manifold and the reconstructed
image. However, in the case of the variable y, already a 3-
dimensional differential reconstruction suffices for diffeo-
morphism [13, 14]. Due to computational and modeling
reasons, we would like to know whether some variables lead
to a diffeomorphism in a space of smaller dimension than
others and to know how low the minimal possible embedding
dimension is. To contribute to solving this problem, Letellier
et al. defined some observability indices that enable ranking
of the observables according to their effectiveness in the
reconstruction process [13, 15-17].

Problems with the Standard Estimates of the Embedding
Parameters. In practice, the most commonly used method
for selecting the embedding parameters consists of the first
minimum of the mutual information to estimate the time
delay and the FNN test to find the sufficient embedding
dimension.

It should be emphasised that the selection of the delay for
reconstruction, which is based on the mutual information,
holds for 2-dimensional embeddings but not necessarily for
higher dimensional embeddings. Even in the 2-dimensional
case, the criterion can be regarded as effective only for a time
series that has a single, dominant periodicity or recurrence
time. In that case, the suitable lag is approximately one-
quarter of the dominant period, and this value is in good
agreement with the minimum of the mutual information or
the first zero of the autocorrelation function. However, the
same delay time is often used regardless of the number of
delay vectors that form the reconstruction, although some
authors suggest lowering the delay time when increasing the
dimension. They argue that the independent parameter that
should be estimated is not the delay 7 or the embedding
dimension m separately but rather the whole embedding time
window (TW), which is given as TW = (m — 1)t [18-22].
Despite all this, no standard procedure for estimating the
time window has emerged yet and most researchers continue
to use the same time delay regardless of the size of the
reconstruction space.

In this work, we want to contribute to the debate about
the importance of the time window and the possibility of
using FNN methods as a tool for the optimal embedding
parameters selection.

The paper is organised as follows.

In Section 2, a short review of the methods that use the
idea of false nearest neighbours to estimate the parameters of
the state space reconstruction is given. We also discuss the
importance of the correct choice of observables, if several of
them are at our disposal. Then, we describe the data that is
used as benchmarks, and we introduce the three methods that
were used for testing the data. In Section 2.3 a rank-based
modification of false nearest neighbour method is proposed.

In Section 3, we present the results that regard the effects
of the reconstruction on the evolution of the false nearest
neighbours, on the estimates of the correlation dimension,
and on the errors in the predictions.

Finally, the findings are discussed and summarised in
Section 4.

2. Data and Methods

2.1. False Nearest Neighbours Algorithms. The false nearest
neighbours method is the most popular tool for the selection
of the minimal embedding dimension. This method is based
on the assumption that two points that are near to each other
in the sufficient embedding dimension m should remain
close as the dimension increases. However, if the embedding
dimension m is too small, then the points that are in reality
far apart could seem to be neighbours (as a consequence of
projecting into a space of smaller dimension). The various
modifications of the method apply geometrical reasoning:
one increases ED until the reconstructed image is unfolded.
The method checks the neighbours in increasing embedding
dimensions until it finds only a negligible number of false
neighbours when going from dimension m to m + 1. This
m is chosen as the lowest embedding dimension, which is
presumed to give reconstruction without self-intersections.

In the case of clean deterministic data, we expect that
the percentage of false neighbours will drop to zero when
the proper dimension is reached. If the signal is too noisy,
however, it could be that the method fails due to efforts to
unfold the noise.

From several variants and modifications of the false
neighbours algorithms [12, 23-26] we would describe the two
most commonly used.

2.1.1. Kennel’s Algorithm. The false nearest neighbours
method, as introduced by Kennel et al., is an iterative process
[12]. An m-dimensional state portrait is reconstructed by
taking the time-delayed coordinates of the observed time
series. The time delay is set as the first minimum of the
mutual information function [3]. Then, the algorithm takes
each point in the m-dimensional portrait and finds the
distance R(m) to its nearest neighbour and, afterward, the
distance R(m+ 1) between the two points in 1+ 1 dimensions.
If V(R2(m + 1) — R*(m))/R*(m) > R, where R, is some
threshold, then the neighbours are said to be false. One
then repeats the process at higher dimensions, stopping
when the proportion of false nearest neighbours becomes
zero or sufficiently small and will remain so from then
onward. For clean data with an infinite length, this criterion
would be sufficient to determine the proper embedding
dimension. However, noise with a limited amount of data
would erroneously produce a finite embedding dimension.
The problem turns out to be that even though two points are
the nearest neighbours, they are not necessarily close to each
other. Such points are considered to be false neighbours,
and this arrangement is checked by the second criterion:
R(m + 1)/R, > A, where R, is an estimate of the
attractor size and A, is the second threshold. The authors
advocate using this pair of criteria jointly by declaring a
nearest neighbour as false if either test fails. For data sets
of similar size and complexity, as in our study, Kennel et al.
recommend the next settings of the thresholds: R, = 15,
A,y = 2. For each dimension, the percentage of the false
nearest neighbours is calculated. Eventually, the lowest
possible dimension with no more false neighbours than




what we are prepared to tolerate is declared as the optimal
embedding dimension.

2.1.2. Caos Algorithm. One of the problems of the FNN
method stems from the subjective choice of several param-
eters: Kennel’s algorithm, for example, uses R,; and A to
distinguish between true and false neighbours and another
threshold parameter to determine when the fraction of FNN
is sufficiently small (to allow the reconstruction space to
be declared as sufficiently large). Unfortunately, for different
thresholds of parameters, the algorithm could lead to differ-
ent estimates of the optimal embedding dimension. To avoid
this subjectivity, Cao introduced a modified algorithm that
is sometimes called an averaged false neighbours method
[24]. Instead of testing the neighbours to be false or not, Cao
calculates how, on average, the distances between the nearest
neighbours change after going from dimension m to m + 1.
The dimension at which the change stops is taken as the
proper embedding dimension, assuming that the trajectory
is fully unfolded, and adding another dimensions does not
change the average distance between the nearest neighbours.
The main advantage of this method is that the number of
subjectively chosen thresholds of parameters is reduced.

2.1.3. Comparison of the FNN Methods. To compare different
FNN methods, Cellucci et al. [27] have tested them on the
Rossler system and the Mackey-Glass equation. Five criteria
for selecting embedding parameters have been applied to the
observables of the systems. For the resulting combinations
of embedding parameters, the largest Lyapunov exponent
was calculated by using a procedure published by [28] and
was compared against those that were determined by the
more exhaustive analytically based calculations published by
Benettin et al. [29]. The criterion that reproduced best the
reference values of the Lyapunov exponents was considered
to be the most successful. The best identification of the
embedding dimension has been achieved with the method
of Kennel [12], and the best value of the time shift has been
found by using the mutual information.

In another comparative study, which was conducted by
Letellier and his colleagues [30], three classical tests for
whether a mapping is an embedding, depending on the
geometric and dynamical measures, were compared with a
fourth test, which depended on a topological measure (the
Gauss linking number). The tests involved estimating the
fraction of false near neighbours, the correlation dimension,
and the largest Lyapunov exponent as a function of the
embedding parameters. Finally, the topological test that was
proposed by the authors was based on the idea that in regions
where intersections of unstable periodic orbits occur and the
linking numbers of the orbits change the mapping cannot
be an embedding. For the testing examples, the authors
used a periodically driven Takens-Bogdanov oscillator and
a modification of the Malkus-Robbins equations, which
were originally introduced to model the action of a self-
exciting dynamo. Due to limitations of the topological test,
a comparison of the methods could be performed only for
mappings into three dimensions. The authors have found that
the classical tests often fail to identify when the mapping is
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an embedding. They have suggested that all claims for
successful embeddings into three or higher dimensions that
were based on geometric or dynamical methods should be
treated with the greatest skepticism.

2.2. Suitability of Variables for Reconstruction. Another issue
that is not satisfactorily resolved concerns the fact that
if we have more observables from the same system, they
do not appear to be equivalent with respect to the phase
space reconstruction. It appears that different variables could
contain different levels of information [13, 21]. For example,
it is much easier to obtain a global model from the variable y
of the Réssler system than from the variable z.

Moreover, Whitney’s embedding theorem ensures us
that a combination of different variables could form an
embedding as well. For example, multichannel measurements
are typical for neurology. In such cases, instead of time-
lagged copies of a single variable, you can use several different
simultaneously taken observables or you can yield a mixed
time-delay and multivariate embedding.

As already mentioned in Introduction, it would be useful
to have an index that enables a ranking of the observables
according to their effectiveness in the reconstruction process.
In control theory, the notion of observability is well defined
for linear systems. The linear system is evaluated as either
observable or not. If a system is observable, then from the
system’s outputs, it is possible to determine the behaviour of
the entire system. If it is not observable, then the output data
disallows us from estimating the states of the system com-
pletely. To check if a linear system with # states is observable,
the rank of the so-called observability matrix is calculated. If
it is equal to n, then the rows are linearly independent, the
initial state can be recovered from a sequence of observations
and inputs, and the system is observable in Kalman’s sense
[31].

Since 1998, to extend the theory of observability to
nonlinear systems, Letellier et al. introduced several measures
that rank the variables of the system according to their
observability [13,15-17]. The indices were derived for systems
that have known equations, and they appear to be ranking
the variables quite well. In [16], a procedure for comparing
two observables of the same system without a need for the
system equations is proposed. This time-series approach is
based on the so-called omnidirectional nonlinear correlation
functions, and it agrees relatively well with the earlier indices
with respect to the observability order of some benchmark
systems’ variables.

In this paper, the so-called symbolic observability coeffi-
cient will be used for comparison purposes [17]. Its computa-
tion requires knowledge of the equations of the system, and
it is based on the so-called fluency matrix, which emphasises
constant and nonconstant elements of the Jacobian matrix;
these elements correspond to linear and nonlinear terms in
the vector field of the system. The symbolic observability
coefficients are greater than one when the dimension of the
reconstructed state space is too large. They allow choosing
from the system equations the best variable or the best
combination of variables for univariate (resp., multivari-
ate) reconstruction. The observability coefficients provide
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an upper limit for the size of the reconstruction space that
is sometimes smaller than those provided by the Takens
criterion. These computations indicate that the observability
is more related to the couplings between dynamical variables
than the dynamical regime itself. The authors also claim that
the observability is related to the possibility of rewriting the
system in a polynomial form while using only the chosen
observable. Provided that the coordinate transformation is
a global diffeomorphism in n-dimensional space and the
original system is polynomial, the system can be rewritten
under the form of an #n-order ordinary differential equation
in a polynomial form.

2.3. False First Nearest Neighbour (FFNN) Method. In this
paragraph, let us introduce a new modification of false
neighbour methods, which we then use to find the best
embedding parameters. The basic idea is to use rank-based
modification of FNN method and to create maps that visu-
alise the evaluation of false neighbours for combinations of
values of delay and embedding dimension.

When designing the algorithm, we intended to not leave
room for subjective choices of thresholds in the method.
Moreover, we also aimed to reduce another serious problem
of the FNN methods, which is related to the phenomenon
called the curse of dimensionality. When the dimensionality
increases, the volume of the space grows so fast that soon the
avaijlable data become sparse. To obtain statistically reliable
results, the amount of data would need to grow exponentially
with the dimensionality. Even with enormously large data
sets, it is usually not recommended to use the algorithms in
more than 10-15 dimensions. In [32], the authors explored
the effect of increasing the dimensionality on the nearest
neighbour problem. They showed that under a broad set of
conditions, as the dimensionality increases, the distance to
the nearest data point approaches the distance to the farthest
data point. This arrangement is obviously a problem because
it indicates poor discrimination ability, which arises from the
fact that all of the distances between pairs of data elements
appear to be very similar. In such cases, the use of rank-based
measures can be considered because they appear to be less
prone to the curse of dimensionality compared with to the
primary distances from which the rankings are derived [33].

In this study, we use quite large data sets and low dimen-
sions. Therefore, problems with dimensionality need not be
critical, and theoretically, we could use the performance of
the average distance of the nearest neighbours (the method of
Cao) for creating the maps. Nevertheless, we suggest avoiding
using the distances, and we prefer to rely only on counting
the number of shared neighbours. In particular, we assess the
performance of the first nearest neighbours as going from
m-dimensional space to (m + 1)-dimensional, to obtain a
secondary measure that is induced by the primary distance
measure (Euclidean norm here).

Here is our modification of the false nearest neighbour
algorithms.

(1) Take the observable of the system, and for combina-
tions of time delays and embedding dimensions, form
time-delay reconstructions.

(2) Both in m-dimensional and in (m + 1)-dimensional
reconstructions, identify the closest point (the first
neighbour in the Euclidean sense) to each point on
the reconstructed trajectory.

(3) Quantify the rank-based measure of the FFNN
method as a percentage of cases when the nearest
neighbour to a point in m-dimensional space ceases
to be the nearest neighbour of the same point in the
space of one higher dimension.

(4) Visualise the results, for example, as a color-coded
map to detect the best combinations of parameters for
the state space reconstruction.

The best embedding parameters bring us as close as pos-
sible to the reconstruction for which the nearest neighbours
remain nearest neighbours in larger state spaces. However,
can we expect that the reconstruction that is chosen as
optimal by the FFNN method is also the most suitable for
purposes such as the estimation of Lyapunov exponents,
modeling, or forecasting? Let us check this possibility at
least for two applications—the estimation of the correlation
dimension and a nonlinear one-point prediction. To take
advantage of dynamical systems whose properties are quite
well known, we are going to use the Rossler and the Lorenz
system as the benchmark systems.

2.4. Rossler System. As the first test example, we use the
Rossler system [34]:

X=-y-z
¥ =x+ay, ey
z=b+z(x-o¢),

with parameters a = 0.398,b = 2, and ¢ = 4 and the initial
condition [0, 0,0.4]. This system was integrated by means
of the fourth order Runge-Kutta formula with integration
step 0.02. The first 1500 points were discarded, and the next
100000 data points were saved.

Spectral analysis of any of the variables shows a peak,
which suggests that one running around the attractor takes
approximately 310 points. Then, one of the tips for the
time delay for the reconstruction could be a quarter of that
period, that is, 77. Finding the first minimum of the mutual
information and the first zero crossing of the autocorrelation
functions also suggest approximately the same value for all
three variables. Therefore, the established way to proceed
would be to use 77 as the time delay and to look for the
minimum necessary embedding dimension by some nearest
neighbours method.

For a long time, possible differences between the levels of
observability of different variables were ignored. According
to Takens theorem, 5-dimensional reconstruction from any of
the variables ensures a diffeomorphism between the original
phase space of the Rossler system and the reconstructed
space. However, the investigation of the system shows that
derivative reconstruction (y, y, y) is globally diffeomorphic
to the original state portrait in three dimensions already.
The global model from observable y can be obtained with



TABLE 1: Mean values of the symbolic observability coefficient [17].
The coefficient is equal to 1 when the system is fully observable from
a variable in 3-dimensional space.

X y z
Rossler 0.88 1 0.44
Lorenz 0.89 0.46 0.35

relative ease. On the other hand, x and z need at least a 4-
dimensional derivative reconstruction space, and especially
the z variable is known to be a very problematic basis for
reconstruction and modeling [14, 17, 35]. Moreover, other
than derivative reconstruction might even need an additional
dimension to fully unfold the attractor. The values of the
symbolic observability degrees # confirm that y is the best
and z is the worst observable of the Rossler system. The values
of # can be found in Table 1.

2.5. Lorenz System. The second data set comes from the
Lorenz system that has the well-known butterfly-like attrac-
tor [36]:

x=0(y-x),
y=Rx-y-xz (2)
z =-bz + xz,

with parameters ¢ = 10, R = 28, and b = 8/3, and an
initial condition [0.3,0.3,0.3]. The system was integrated by
the fourth order Runge-Kutta method with an integration
step of 0.005. The first 4000 points were removed, and the
following 100000 points were saved.

The integration step was chosen to ensure that one
round on the attractor responds to approximately 300 points
on average. Nevertheless, the subsequent spectral analysis
revealed no prominent frequencies in the data. In fact, it is
not surprising for a chaotic time series. A typical trajectory of
the Lorenz system stays on one wing of the attractor, circling
from the inside to its peripheral border some time before it
jumps to the other wing. Consequently, the autocorrelation
function decays smoothly. The method of the time-delayed
mutual information also refuses to provide a clear answer as
to what value of delay to use. Finally, one would probably
turn to the visual inspection of 2-dimensional plots to find
the delay that sufficiently unfolds the trajectories. It appears
that the result might be a time lag of approximately 37, which
corresponds to a quarter of the average time that is spent on a
single wind. We will show later whether this highly heuristic
guess is usable.

In [15], the authors conclude that the nonequivalence
between the observables of the Lorenz system has two
basically different sources, which are the complexity of the
coupling between the variables and the symmetry properties.
Even for the variable x, however, the reconstruction needs
at least a 4-dimensional space. We are addressing univariate
reconstructions in this study, but allow us to briefly recall
that multivariate reconstruction in 3-dimensional space is
possible if the variable x, the derivative of x, and the variable
z are used. The fact that the attractor is setwise symmetric
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under a rotation around the z-axis plays a key role. As
a consequence, the two wings cannot be distinguished by
looking at the observable z [35]. The symbolic observability
coeficients appear to give the correct observability order,
indicating that z is the worst and x is the best observable. The
values of the symbolic observability degrees # can be seen in
Table 1.

2.6. Correlation Dimension Test. First, we are going to test
the quality of the reconstruction by means of estimates of the
correlation dimension (D,). The valuation of the complexity
and the fractal character of the studied chaotic process
by the correlation dimension has been extensively used
since 1983 when Grassberger and Procaccia proposed their
computationally efficient approach to dimension estimation
[37].

We are going to estimate the dimension of the Rossler and
Lorenz attractor when reconstructed with different combina-
tions of embedding parameters to find out how important the
choices of m and 7 are for the estimation of the correlation
dimension.

The results that have been published so far are not entirely
consistent; for example, the authors in [38] imply that it is the
delay time itself, rather than the total observation window,
that plays the most critical role in the determination of the
correlation dimension. They measured the quality of the
reconstruction by the length of the linear scaling region: for
fixed values of the window, with a dimension of the space that
is large enough to guarantee an embedding and a delay that
is large enough to avoid the problems of autocorrelation, the
length of the scaling region was found to be the largest for
the smallest admissible value of the delay. On the other hand,
in [20, 39, 40], it is shown that it is the embedding window
that is crucial for estimating the correlation dimension. In
[39], the results for three test cases (Rossler equations, Lorenz
equations, and 3-dimensional irrational torus) lead to the
warning that neither mutual information nor autocorrelation
is consistently successful in identifying the optimal window.

In [21], the x and z variable of the Rossler system are
given as an example of a good and a bad variable. He found
that for measurements over the same epoch, the correlation
dimension of the Rossler attractor was well estimated by the
x-measurements but significantly underestimated by the z-
measurements. The author claims that, geometrically, one
could associate the proper time window with the mean
orbital period, which can be estimated as the mean time
between visiting a Poincare section or can be approximated
by examining the oscillatory patterns in the data. In [19], on
the other hand, the authors recommend choosing the time
window as one-half of the critical window width.

To be able to take a position on whether the combinations
of parameters that are promising according to the FFNN
method are also optimal for the D, computation, we evalu-
ated the error in the dimension estimates over the possible
combinations. However, recall that even with a large data
set, the detection of the plateau is not an easy task, and for
a small amount of data, it is practically impossible [41, 42].
We used a computerised method for finding the linear region
that includes use of the so called Theiler window and is
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described in [43]. Then, we looked for the minimal difference
between the correlation dimension estimate from the original
three-dimensional state portrait and the estimates from the
trajectories reconstructed from single coordinates.

2.7. Predictability Test. One of the most convincing argu-
ments for a specific choice of embedding parameters is
enabling the best possible modeling or forecasting of the data.
Although the long-term prediction of a chaotic time series is
not possible, for a short time ahead, novel nonlinear predic-
tion methods are quite successful, especially when compared
with predictability that is based on linear correlations in the
data. The choice of a specific method depends on several
aspects—how much data we have, what is the type and level
of the noise, and so on. In this study, we have a long time
series of clean artificial data, and we use a simple but effective
prediction method for our testing purposes. The question is,
will the parameters that are optimal for making predictions be
consistent with those picked up by the FENN method? To find
out, the nonlinear method of one-point predictability of the
time series is performed for various combinations of delays
that are used for the reconstruction and dimensionality of the
state space.

The idea of the forecasting method used here is to find
historical data that is similar to the current situation and
to assume that the system will react in the same way as in
the past. This technique is generally known as the method
of analogues [44]. To predict a follower of point X, the
simplest version of the method of analogues finds its nearest
neighbour X; from the past states on the reconstructed
trajectory and declares X,,; = X;,;. A modification that
we have used in this study improves the simple version
by utilising the direction in which the image of the found
neighbour moves. Specifically, it means that we find the
nearest neighbour X; of the point X, and declare X,
X, + X1 — X;. In our examples, we made 620 (approximately
two cycles) 1-point predictions. Each prediction was based on
93000 data points (approximately 300 preceding cycles).

To quantify the success of the prediction, the root mean
squared error (RMSE) is often used. However, because the
RMSE is scale-dependent, it is a good option to compare
the forecasting of different methods for a specific observable.
However, the RMSE is unable to compare how well one
method forecasts different observables. To take the range of
observed values into account, we used the normalized root
mean squared error (NRMSE), namely, the RMSE divided
by the standard deviation of the true time series during the
prediction interval.

We evaluated the prediction error for different combina-
tions of embedding parameters and compared the resulting
maps with the maps that were obtained by the FFNN method.

3. Results

3.1. Cao’s Algorithm. To demonstrate a traditional method of
how the false nearest neighbours are used for the selection of
the parameters of reconstruction, Cao’s algorithm was tested
for the variables of the Rossler system.

3 Cao’s method for variables of Réssler system

2.8 ¢
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24 ¢
221

E(d + 1)/E(d)

2 3 4 5 6 7 8
Embedding dimension
--- Variable x

—— Variable y
‘‘‘‘‘‘ Variable z

FIGURE 1: Cao’s method [24] used for the variables of the Rossler
system. The time delay is set to the value of 77. The figure shows the
evolution of the average distance of the nearest neighbours for the
variables x, y, and z.

In line with the arguments in Section 2.4, the time delay
was set to the value of 77, which corresponds to the first
minimum of the mutual information for all three variables.
Then, the change in the average distance of the nearest
neighbours was calculated for the embedding dimensions, up
to 7. The results are presented in Figure 1.

To find the smallest sufficient embedding dimension, we
must look for the dimension at which the average distance of
the nearest neighbours stops growing. This criterion means
that the monitored ratio E(m + 1)/E(m) (the values on the
vertical axis) falls below a certain threshold. For an unlimited
amount of noise-free data, the ratio should settle to the value
of 1. In practice, however, the threshold is chosen with respect
to the noise level and other aspects of the data. However,
as our test case demonstrates, the message of the resulting
graph could be unclear even in a case in which there is a large
amount of clean data.

Based on what we know about the Rossler system (see
Section 2.4), we expect a result to tell us that in the case of y
variable, a 3- or 4-dimensional embedding space will suffice,
while for x and especially for z higher-dimensional space is
necessary to fully unfold the attractor.

As Figure 1 shows, the results confirm the anticipated
nonequivalence among the dynamical variables. However,
the recommendations that regard what size of state space is
sufficient for reconstruction differ substantially depending on
the chosen threshold. For example, if the threshold is set to
1.4, then for the x and y variable the suggested embedding
dimension equals 2, and the embedding dimension for the
z induced state portrait is estimated as 4. However, if we
consider a threshold of approximately 1.2, then the suggested



embedding dimension is 4 for x and y and approximately 7
for the z induced state portrait.

To summarise, despite the fact that we used a large
amount of clean data, we were unable to unambiguously
select the reconstruction parameters. Moreover, the choice
of a fixed value of the delay can be a crucial problem if the
hypothesis of importance of the embedding window is valid.

3.2. FFNN, D,, Predictability. To select the best combinations
for the delay and embedding dimension, we use the maps
that are produced by the false first nearest neighbour method
introduced in Section 2.3.

The FFNN algorithm was calculated for the Rossler and
Lorenz system. The delay parameter was taken from the
range 1 to 80, and the maximal dimension for which it was
calculated was set to 7. The resulting maps show a color-
coded dependence of the percentage of the false first nearest
neighbours for combinations of the two parameters: the
darker the colour, the fewer false neighbours remain after
increasing the dimensionality of the space (Figures 2(a) and
3(a)). Looking at the map and recognising the dark bands
reveal immediately that the time window is more relevant
than either 7 or m separately.

Our method is nonparametric as far as it is intended to
provide the optimal size of the time window. If we are also
interested in the minimal dimension for the reconstruction,
then we must specify how many false neighbours we are
prepared to tolerate. This threshold is the only parameter of
the otherwise nonparametric method.

One of the main questions is whether the FENN method
leads to the same embedding parameters for different vari-
ables of the same system. Based on the maps, a time window
of approximately 140 points appears to be optimal for the
x-variable of the Rdssler system, 156 points for the y-
variable, and approximately 330 points for the z-variable
(see Figure 2(a)). This finding means, for example, that if
we decide to use the variable y for the reconstruction with
embedding dimension 3, then a delay of 52 is an appropriate
choice; in the case of an ED = 4, delay 39 should be taken and
so on. The width of the time window is very close to the half
of the cycle for the variables x and y and close to the length
of one cycle for the z variable.

With respect to the inequivalence of the variables of the
Rossler system, the observability coefficients # (see Table 1)
sort the variables from the best to the worst, as follows:
y,x,z. The results of FFNN confirmed that the z appears
to be the less appropriate observable for the reconstruction,
although there was not much visible difference between the
variables x and y. However, the tests of the predictability and
the correlation dimension show much more clearly, and in
accordance with the values of observability indices, that some
variables lead to significantly better results than others. In the
case of the x variable of the Rossler system, the time window
of approximately 140 points, as indicated by FENN, appears
to be optimal also for a one-point prediction. For D,, the
estimation time window of approximately 240 points should
be used for the x-variable. Variable y (the variable with the
highest observability degree) shows better predictability than
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x, especially if a window of 125 or 205 points is used for
reconstruction.

The estimation of the correlation dimension was best
manageable by the y-variable. The huge black region in the
corresponding map (image in the middle of Figure 2(c))
shows that there was a lot of successfully usable combinations
of ED and 7. In contrast, the ability to estimate the correlation
dimension from the z-variable was very limited. It was
restricted to a few widths of the time window, such as 120 or
240. Even the slightest deviation from the applicable windows
made the estimate impossible (right map of Figure 2(c)).

Next, let us make a quick comparison to the results for
the Rossler system from Caos method. Based on Figure 1 we
can choose T = 77, ED = 8 for the reconstruction from the
variable z or embedding parameters T = 77, ED = 4 for the
variable y. In the former case, both the predictability and the
accuracy of the D, estimate are very low (see Figure 2). The
latter case (y variable, T = 77, ED = 4) is relatively applicable,
although Figure 2 shows that, for an optimal prediction in 4-
dimensional space, we should use a substantially lower time
delay than 77.

For the Lorenz system, the observability coeflicients sort
the variables from the best to the worst, as follows: x, y, z.
The same order was reflected by the tests that are presented
in Figure 3. As discussed in Section 2.5, in 2-dimensional
space, the trajectories appear to be best unfolded if a delay
of approximately 37 points is used. This value indicates that
there is an embedding window of approximately 75 points,
which corresponds to a half of the average time (150 points)
spent on a single wind. Our results show that TW = 75 is
acceptable, although a one-point prediction was better for
a slightly smaller window, while for an estimation of the
correlation dimension from x or y, a slightly larger window is
preferable. Estimation of the correlation dimension was most
difficult for the z-variable, where the functional window had
a width of approximately 190 points.

A comparison of the FFNN maps with the maps for
predictability and D, shows that embedding parameters that
are derived from the false nearest neighbours method are not
necessarily the best choice for the specific data analysis. For
example, let us look at the maps created for the x variable
of the Rossler system. The darkest regions on the map for
correlation dimension are not dark on the map for prediction.
This is a reflection of the fact that estimates of D, from
x variable were the most accurate for time window that
was considerably wider than that optimal for the one point
prediction of the x variable. However, this finding need not
be true for different prediction methods. For example, Small
and Tse claim that the best reconstruction is given by a
relatively large embedding window and a constantlagof 7 = 1
[22]. However, they used an extremely simple local constant
model to select the embedding window for which the model
performed best.

4. Discussion and Conclusions

Much more attention should be given to the choice of
parameters for the state space reconstruction because all
of the tested nonlinear statistics suffer when the delay or
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FIGURE 2: (a) Color-coded dependence of the percentage of the false first nearest neighbours for the variables x, y, and z of the Rossler system.
The time delay is from 1 to 80, and the embedding dimension is from 3 to 7. (b) shows how the choice of the embedding parameters influences
the one-step prediction error. (c) Precision of the estimates of the correlation dimension for combinations of embedding parameters.

the embedding dimension is chosen inappropriately. Until
recently, the most common practice was to estimate the delay
(usually as the minimum of the mutual information) in the
first step. Then, the method of Kennel or Cao followed to
estimate the minimal embedding dimension.

As we have shown, the above procedures do not enable
us to use the idea of nearest neighbours to its full potential.
The method that has been proposed in this paper was
designed with the intention of getting the most out of

the false neighbours methods, to select the variable and the
embedding window for a state space reconstruction.
To summarise, the outcomes of this study are the following.

(i) When creating a time-delay reconstruction, we can-
not rely on a fixed value of the delay given by the
mutual information or an autocorrelation function
because this choice is justified only for 2-dimensional
space, and even then, it could be far from optimal.
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FIGURE 3: (a) Color-coded dependence of the percentage of the false first nearest neighbours for the variables x, y, and z of the Lorenz system.
The time delay is from 1 to 80, and the embedding dimension is from 3 to 7. (b) shows how the choice of the embedding parameters influences
the one-step prediction error. (c) Precision of the estimates of the correlation dimension for combinations of embedding parameters.

Moreover, the delay is difficult to find if the data are
broadband and lacking any indication of periodicity.
Instead, we use a map that is based on the false
nearest neighbours idea to select the most appropriate
combination of the delay and embedding dimension
in one step. In this study, the earlier versions of the
false neighbours methods, which use the Euclidean or
other distances, were replaced by an almost nonpara-
metric ranking based modification that we called false
first nearest neighbour method (FFNN).

(ii) The resulting color-coded maps reveal the importance

of the embedding window. However, as we demon-
strated, the choice of the embedding window is prob-
lem dependent. The FFNN maps lead to parameters
that ensure unfolding of data in a state space, but
the same parameters do not seem to be necessarily
optimal for purposes that follow the reconstruction.
For example, the optimum window for the one-point
prediction was typically substantially smaller than
the optimum window for the computation of the
correlation dimension.
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(iii) Consequently, when looking for the correct embed-
ding parameters, we should explore the parame-
ter space while following some invariant, which is
expected to indicate reaching the correct embedding
window. The invariant should be chosen according
to the purpose of the reconstruction. For example,
when looking for the best embedding parameters for
predictive modeling, one would minimise the pre-
diction error over the possible combinations rather
than trust the false nearest neighbour method without
reservation. It appears to be worthwhile to prepare
similar maps as we did or at least to try several
combinations of embedding parameters to reveal the
optimal embedding window for the specific task.

(iv) It turns out that in addition to the embedding window
there is another crucial aspect of the reconstruction
process, namely, the selection of the observable. The-
oretically, the variable that is used for the reconstruc-
tion can be chosen arbitrarily. In practice, however, if
several observables are available, then some of them
or some combinations can be markedly better for
reconstruction of the dynamics than others. This fact
is not widely known. For testing purposes, we used
two systems that have known equations and, hence,
known symbolic observability degrees; thus, we had
certain expectations regarding sorting the variables
for better and worse. The results of the FFNN method,
the D, estimates, and the predictability corresponded
to the values of the symbolic observability degrees.
The color-coded maps illustrated how dramatically
the choice of variable can affect the ability to make
predictions and estimate the complexity. In practical
situations, when two or more scalar time series are
recorded, it is definitely worthwhile to find the most
appropriate observables for the reconstruction. The
use of a combination of several observables can also
be considered, but this alternative requires further
study.

(v) Finally, recall that knowing the optimal TW does not
mean that any larger than necessary ED (with an
appropriately reduced delay) can be used equally well
for the analysis of the underlying dynamics. With a
limited amount of data, choosing too large of a space
increases the redundancy and spoils the results. For
example, the prediction benefits from having as many
points as possible in the predicted neighbourhood,
but the data become sparse in a higher embedding
space. Consequently, using the optimal embedding
window in spaces of lower dimensions leads to the
best results.

Finally, let us recall that we have tested data under noise-
free conditions. However, real time series are inevitably
contaminated by noise, and it is likely to affect the value
of the optimal embedding window even more than the
number of data, sampling, type of application, or choice of
observable. The noise amplification could cause a transition
from a situation that can be investigated as approximately
deterministic at least for short times to behaviour that appears

1

to be random. Therefore, further studies are needed to
investigate the robustness of the methods to noise.
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