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Abstract 

We investigated the properties of a transfer matrix for the formulation of forward problem of 
electrocardiography, assuming the multiple dipole model of the generator of heart electrical 
activity (multiple dipole heart model). We used singular value decomposition (SVD) for 
factorization of the transfer matrix, paying special attention to its numerical null and signal 
spaces. The possibility of inverse reconstruction of the modeled multiple-dipole-equivalent 
source model of the heart electrical activity was studied. We used the angle between the 
source vector and its projection onto the transfer matrix signal space as a measure quantifying 
feasibility of finding the inverse solution.  
Small ischemic lesions were modeled in selected heart regions by shortening the action 
potential duration by 20%. The derived theoretical results were tested for the multiple dipole 
heart model representing small ischemic lesions located on the endocardium and epicardium 
of modeled left ventricle. 
It was shown that the theoretically best inverse result depended only on the formulation of the 
source model. As predicted, the best inverse solution was found for those lesions, which could 
be modeled by the source generator with the largest projection to the signal space of the 
transfer matrix. 

1 Introduction 

Presently, besides the classical 12-leads electrocardiograms (ECG), body surface potential 
maps (BSPM) recorded by multiple lead recording systems are available. Several model-
based methods are used to understand and interpret the measured data. Various types of 
models of heart and torso configuration have been developed. They can vary from simple 
eccentric spheres [1] to realistically shaped heart and torso geometry, constructed from MRI 
scans. Similarly, the models of equivalent electric cardiac generator have been described by 
various approximations: a single dipole model, a multiple-dipole model, an epicardial source 
formulation [2] or a transmembrane potential source formulation [3]. The forward problem of 
electrocardiology concerns computation of body surface potential maps using the chosen 
model of heart generator and a transfer matrix. The transfer matrix is defined by properties of 
the torso as a volume conductor and the method of computation of the surface potentials. 
Regardless of the complexity of the model generator, the final set of forward problem 
equations after discretization often yields a linear equation A.s=p, where A is the transfer 
matrix, s represents the sources (heart generator) and p describes the measured potentials on 
the body surface [2],[4]. Forward simulations provide an effective tool for the verification of 
inverse reconstruction of equivalent model of electric generator from data measured on the 
torso surface. In the case of linear forward model formulation, solving the inverse problem 
leads to the computation of inverse of the transfer matrix A, which is usually non - regular), 
so the problem is ill-posed [4]. Small noise in the measured data can cause considerable 



changes in the inverse solution. Another problem is non-uniqueness of the solution due to 
positive dimensionality of the transfer matrix null space [5]. 
In this paper multiple dipole equivalent model of the source of cardiac electrical activity was 
examined. The geometry of the heart ventricles was analytically defined by ellipsoids. Action 
potential propagation was modeled using the cellular automaton principle. The possibility of 
inverse reconstruction of multiple dipole model of heart generator representing small 
ischemic lesions was investigated. In the inverse solution, various levels of a criterion for 
truncated SVD of the transfer matrix were studied.  

2 Materials and Methods 

2.1 Model of multiple dipole heart generator 

In the used model, real geometry of heart was replaced by its analytically described 
approximation by parts of ellipsoids, which constitute the ventricles and the epicardium [6] 
(Fig.1). 

 

Fig.1. Analytically described model of heart ventricles 

The modeled heart volume was divided into 1mm3 cubes, representing basic volume elements 
for the simulation of electrical activation propagation. It was assumed that every element 
consisted of the same type of cardiac cells with predefined shape and duration of action 
potential (AP). Five types of normal action potential duration, depending on the position of 
the volume element in the myocardium were considered: from 309 ms on the endocardium to 
252 ms on the epicardium. 
The spread of activation through the myocardium was initiated from 7 starting points selected 
according to the Durrer’s investigations [7]. The activation progressed following the 
principles of cellular automaton, i.e. in each time step each element was activated from its 
neighbour. The velocity of the activation spread in most endocardial elements was 3-times 
higher, thus simulating the properties of Purkynje fibres. In Fig.2, isochrones for modeled 
normal activation in 3 cross-sections of the myocardium are displayed. 
 



 

Fig.2. Isochrone maps for modeled normal spread of activation in 3 cross-sections of 
myocardium (H-horizontal, S-sagital, F-frontal). 

In each time step an elementary current dipole was computed as the result of the difference 
between action potentials of adjacent volume elements. The modeled heart volume was 
divided into 168 segments, which created the resulting multiple dipole generator [6]. The 
elementary current dipoles belonging to each segment were then summed up and assigned to 
a corresponding representative point in the gravity center of the segment.  

2.2 Forward simulations 

For the forward problem solution, i.e. for the computation of potential maps on the model of 
human torso, we assumed that the modeled cardiac electric generator was inserted into a 
realistically shaped torso. The torso created the boundary between the volume conductor (the 
body) and an outer non-conductive medium. We also included the lungs and heart cavities as 
the main inhomogeneities (Fig. 3). The conductivity of lungs was set to be 4-times lower and 
the conductivity of blood in ventricles to be 3-times higher than the average conductivity of 
the torso [8]. 

                        

Fig.3. The model of heart surface with ventricles filled with blood (left). Realistically shaped 
torso and lungs used for forward simulations (right). 

Assuming the above mentioned multiple dipole generator and applying the boundary element 
method (BEM) yielded the linear matrix equation:   

  A. s  = p,       (1) 
where A is the transfer matrix, s is the source vector and p is the vector of computed 
potentials on the torso. The coefficients of the transfer matrix were computed separately for 



each component of each dipole of the generator. Having n measured points on torso and m 
segmental dipoles as generators, the dimensions of the components in the equation were as 
follows: A [n x (3m)] , s[(3m) x 1] , p[n x 1]. 
Because of the simplicity of the model, we used the model only in situations where such 
simplification may be appropriate, namely to model small ischemic lesions manifested during 
the phase of repolarisation.  

2.3 Multiple dipole model of small ischemic lesions 

Our modeling and simulation of small ischemic lesions was based on several assumptions: 
First, we assumed, that local ischemic disease manifests itself by the changes of action 
potential amplitude and duration. We modeled this situation by shortening and lowering the 
AP of the cardiac generator volume elements [9]. Second, we assumed that these changes 
cause typical baseline shifts in measured ECG signal, especially on the T wave. Time integral 
of surface potentials over the whole QRST interval depends only on the shape and amplitude 
of action potentials and not on the activation sequence. If we compute an integral map for a 
normal activation and then for an activation changed by ischemic disease, we can consider 
their difference ∆p (difference integral map) to be the manifestation of the affected region of 
heart [10], [11].  
We created several ischemic lesions by shortening the APs by 20 % in selected areas typical 
for the stenosis of main coronary vessels (Fig. 4) : lesion A – in the antero-septal part of left 
ventricle near the heart apex (supplied by the left anterior descending coronary artrery, LAD), 
lesion P – in the postero-lateral part of left ventricle close to the heart base (supplied by the 
circumflex coronary artery, Cx) and lesion I – inferior, in the mid postero-septal part of left 
and right ventricle (supplied by the right coronary artery, RCA). In each position we 
simulated 3 sizes of subendocardial lesion (types 1,2,3) – from small to large transmural, and 
also 1 small subepicardial lesion (type E).  
 

 

Fig.4. Simulated subendocardial regions with changed repolarization in the cross-sections of 
ventricular myocardium model. From left to right: antero-septal (lesion A), postero-lateral 
(lesion P) and inferior regions (lesion I). Top - frontal view, bottom - horizontal view. Three 
levels of grey color represent 3 sizes of modeled lesion from small (light grey) to large 
transmural (black) [9]. 

By solving the inverse problem we tried to reconstruct the modeled lesion from the simulated 
difference integral map. Computation of the difference integral map ∆p for the model by 
subtracting the integral map for normal myocardium activation (pnorm) from the integral map 

lesion A lesion P lesion I 



with ischemic area (pisch) is equivalent to computation of the difference map for a difference 
multiple dipole integral generator ∆s, since by linearity of the transfer matrix 
 

A.sisch = pisch,      A.snorm = pnorm     and     ∆p = pisch – pnorm,   
we have 

∆p =  A.sisch  - A.snorm =  A. (sisch – snorm ) = A . ∆s               (1a) 
 

Where snorm represents the normal generator and sisch represents the ischemic generator. 

2.4 Singular value decomposition (SVD) 

Matrix A represents a linear operator mapping the 3m-dimensional generator space to the n-
dimensional integral map space. The most common technique for finding inverse solution to 
the above matrix equation is SVD, which factorizes A into the form: 
    A = U x Σ x Vt ,      (2) 
where Σ = diag{ λi } is a diagonal matrix with non-negative singular values λi. Columns of V 
and U are known as singular vectors and define orthonormal basis for the generator and 
integral map spaces, respectively. Since the singular vectors are unit vectors, each singular 
value λi acts as a scaling factor for generator s along the corresponding basis vector (i-th 
column of V) [5]. 
Typically, the singular values λi are sorted into a non-increasing series. If with increasing 
index i, λi approach small values, the inverse problem to (1) is ill-posed. In such cases there 
exists a critical index l, such that the contribution of basis vectors with indices i > l to the right 
hand side of (1) is negligible (or is in the range of noise) [4]. We will call the subspace of the 
3m-dimensional generator space spanned by the columns of V with indices i > l bad space (or 
numerical null space). Analogically, we will call its complement in the generator space (the 
span of columns of V with indices i <= l) the signal space.  
Since both U and V are orthonormal matrices, their inverses can be conveniently computed 
through transposition:  U-1 = Ut; V-1 = Vt. Hence, 
 

 A-1 = V x Σ -1 x Ut ,       (3) 
where Σ -1 = [diag  (1/ λi)]. 
For small values of λi, the expression 1/λi becomes numerically unstable. Therefore, in 
practice the matrix A is inverted through the so called truncated SVD, using only singular 
vectors with large enough singular values (the first l columns of U and V).  Then the solution 
s’ of the inverse problem of (1) is expressed as the linear combination of basis vectors from 
signal space, i.e. it lies in the signal space. If a substantial portion of the original generator s 
lied in the bad space, the integral map A.s would be negligibly small, making the inverse 
problem infeasible. We suggested to quantify the degree of feasibility of finding the inverse 
solution for integral maps generated by generator s by the angle α between s and s’ – its 
projection in the signal space (Fig. 5): 
                                      α = arccos ((s . s’)/(|s| . |s’|))                                                           (4) 
where (s . s’) is a dot product of vectors s and s’ and |s| , |s’| are the norms of s and s’, 
respectively. 
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Fig.5. Schematic illustration of the relation between the modeled generator s and the signal 
space can be expressed by the angle α. 3D space [x,y,z] represents the space of original 
generator and 2D space [x,y] represents the corresponding signal space. The solution s’ is the 
projection of s to the signal space. 

3 Results 

We applied SVD to the transfer matrix A from (1) (with 198 measuring points and 3x168 
components of multiple dipole generator) and used 5 different values of the criterion svdcrit 
for the SVD truncation.  
The svdcrit was defined as:  

svdcrit = λl / λmax                  (4) 
 
where λmax  - is the biggest singular value from (2), λl – is the singular value fulfilling the 
condition (4) for certain value of svdcrit. By setting the value of svdcrit we implicitly 
determined the number l of largest singular values corresponding to the l basis vectors 
forming the signal space. The number l is called the effective rank of the matrix A for the 
given svdcrit. 
We computed the angle α (Fig.5) for following values of svdcrit: 0.1; 0.01; 0.001; 0.0001 and 
0.00000001. The results are summarized in graphs in Fig.6. 
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Fig.6. Computed angle α between the vector of modeled difference integral generator and the 
signal space of transfer matrix A for several values of svdcrit parameter. Top left: angle α for 
three modeled sizes of subendocardial anterior lesions from small (A1) to large transmural 
(A3) and one small subepicardial lesion (AE), top right: angle α for postero-lateral lesions (P), 
bottom: angle α for inferior lesions (I). The value of svdcrit = 1E-08 represents the full 
possible rank of the transfer matrix, i.e. the situation when the basis vectors corresponding to 
all nonzero values of λ were taken into consideration. 
 
In the best case, α should be near to zero, so the whole generator can be described within the 
signal space, in the worst case α is close to 90 degrees and the projection of the generator 
within the signal space is negligible. For subendocardial lesions (type 1,2,3) the α is very high 
even if we chose the full possible rank of basis vectors i.e. svdcrit = 1E-08. The projection of 
the generator for subendocardial lesion A2 and subepicardial lesion AE is shown in Fig.7a 
and Fig.7b. 
 

 



Fig.7a. Projection of the subendocardial anterior lesion A2 with large angle α to the signal 
space. Absolute values of the original reference multiple dipole model of ischemic lesion 
(first graph). Projections of absolute values of dipole moment integrals of the original 
multiple dipole model to the signal space of transfer matrix A for various values of parameter 
svdcrit (other graphs from top to bottom). Axis x denotes order numbers of the segments in 
heart generator; axis y denotes absolute values of the given integral dipole moments 
(in mA.m.ms)  

 
The top graph in Fig.7a depicts the absolute values of integral dipole moments in each 
segment of the original difference multiple dipole equivalent generator. The following graphs 
(top to bottom) show projections of the generator vector s to the signal space of the transfer 
matrix A for different values of effective rank l. For subendocardial lesions (represented by 
A2) if svdcrit = 0.001, α is very high, α > 65deg. Even if svdcrit is very small (svdcrit = 1E-
08; l = 198) it is still not possible to reconstruct the original generator (Fig. 7a), because the 
angle α remained too large α > 61deg. On the other hand, the projection of the original 
generator to the signal space for the subepicardial lesions (represented by AE) with 
svdcrit = 0.001 provides satisfactory reconstruction of the original generator (Fig. 7b), due to 
the considerably smaller α, α < 45deg (see cases AE, IE, PE in Fig 6). 
 

 
 

Fig.7b. Projection of the subepicardial anterior lesion AE with rather smaller angle α to the 
signal space. Absolute values of the original reference multiple dipole model of ischemic 
lesion (first graph). Projections of absolute values of dipole moment integrals of the original 
multiple dipole model to the signal space of transfer matrix A for various levels of parameter 
svdcrit (other graphs from top to bottom). Axis x denotes order numbers of the segments in 
heart generator; axis y denotes absolute values of the given integral dipole moments 
(in mA.m.ms). 



4 Discussion and Conclusion  

The present study investigated properties of the transfer matrix A used for the solution of 
forward and inverse problems in electrocardiography. The ability to reconstruct the equivalent 
multiple dipole model of the heart generator from the body surface potentials was investigated 
for ischemic lesions. 
The system of equations represented by eq. (1) is ill-posed, therefore not all of the 
components of the model generator s are equally mapped into the body surface potentials p.  
Using SVD of the transfer matrix A, a signal space of the generator can be defined. The 
theoretical analysis showed that the computed potentials p are determined mainly by the 
portion of the generator s’ which lies in the signal space (Fig. 5). 
We propose that in order to quantify the effectiveness / reliability of the inverse solution for 
a particular type of lesion, the angle α between a representative reference generator s and the 
portion of the generator in the signal space s’ should be computed. 
The subendocardial ischemic lesions modeled by multiple dipole model of the heart generator 
with 168 dipoles could not be inversely reconstructed because the vectors representing 
modeled lesion generators did not lie in the signal space (they were close to the nullspace) of 
the transfer matrix A (α >65deg – Fig. 6). Significantly better results were obtained for 
multiple dipole models of subepicardial lesions because the vectors representing modeled 
lesion generators mapped satisfactorily to the signal space of the transfer matrix A (α <45deg 
– Fig. 6). 
In the present study the attention was focused on the signal space / nullspace of the transfer 
matrix A. However, one should keep in mind, that in practice, the inverse reconstruction of 
multiple dipole equivalent heart generator from real life measurements is also influenced by 
other important factors such as individual geometry of each patient or using limited number of 
measuring leads. All these factors are reflected in the specific transfer matrix.  
One of the ways to avoid the ambiguity in inverse reconstruction of multiple dipole model of 
the cardiac electrical activity is to add some constraints or apriori information to the required 
generator. If we assume that the lesion is very small, (e.g. in the case of small ischemic 
lesions), it could be represented by a single equivalent dipole located in the area of the 
specific lesion [9]. Then, for every predefined position of the possible inverse dipole location 
we can choose the corresponding columns from the transfer matrix and solve the inverse 
problem by SVD of the submatrix of size [n x 3]. In most cases such submatrix has the rank 
of 3 (so it has no null space) and for every position we can get the unique solution of the 
overdetermined system of linear equations in the sense of minimum least-squares criterion. 
The best representative position of the single equivalent dipole was chosen using the criterion 
of minimal rms difference between the original difference integral map and map generated by 
the single dipole. 
The theoretical analysis highlighted the importance of the existence of null space / signal 
space in every model described by a linear matrix equation. Before any attempt to analyze 
real data, analysis of the properties of the transfer matrix A can contribute to better 
understanding and evaluation of inverse results. 
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