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Abstract. The paper deals with possible connection between spectrum power-law decay and 
correlation dimension estimated for electroencephalogram (EEG). About 2300 EEG data 
recorded during relaxed wakefulness were analysed. The whole spectrum of EEG was studied 
and power-law decay of about 2.28 prevailing over the exponential falling off was 
established. The mean value of correlation dimension of 4.35 was estimated. The 
discriminating power of both quantities seems to be comparable.  
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1. Introduction 

In the last decades the growing need for a 
better understanding of large-scale brain 
dynamics has stimulated the expansion of 
research in this area. In contrast to the 
linear Fourier analysis based description, 
there are many arguments for neuronal 
dynamics to be considered to behave in a 
non-linear manner. This fact has prompted 
the development of new analysis 
techniques, often referred to as non-linear 
methods.  

Among the various non-linear methods 
available for experimental data, the 
calculation of the fractal complexity has 
probably received the widest attention. It 
has been mathematically established that, if 
we can measure any single variable of a 
dynamical system with sufficient accuracy, 
then it is possible to reconstruct a state 
portrait, topologically equivalent to the 
attractor of the original system. The 
complexity of an attractor of the 
reconstructed behavior may provide 
important information about the system. 

The most popular tool to assess this 
complexity is the correlation dimension 
defined as: 

 

where N(ε) is the total number of hyper-
cubes of side length ε, which cover the 
attractor, and pi  is the probability of 
finding a point in the hypercube i. As 
Grassberger and Procaccia noticed [1] 
C2(ε) is approximately equal to the 
probability that the distance between two 
points of the attractor is less then ε : 

 

where theta is the Heaviside step function, 
and ||.|| usually represents the maximum 
norm.  

In order to estimate the correlation 
dimension, we plot ln C2(ε) as a function 
of  ln ε  and follow the slope ν (ε) of the 
obtained curve. This slope is called a 
correlation exponent, and the limit of it for 



vanishing ε represents the value of 
correlation dimension.  

The relative simplicity of the method of 
Grassberger and Procaccia (GP-method) 
ended in numerous applications. EEG has 
been a matter of interest for the dimension 
computation since the first D2 estimates for 
sleep cycles were made by Babloyantz et 
al. [2]. This attempt was inspired by the 
chaos hypothesis, i.e. it was assumed that 
the EEG could be described by a 
deterministic chaotic system and therefore 
the corresponding attractor could be 
characterized by the fractal dimension.  

Already from the beginning these efforts 
have been questioned for several reasons: 
If the existence of an attractor is assumed, 
then for a reliable dimension estimate the 
time series has to be long enough and fulfil 
requirements such as stationarity and a 
reasonable signal to noise ratio. In fact, 
EEG seems to be a mixture of noise, some 
cyclic processes and random fractal 
signals. Each part of such a composition 
itself has been frequently reported to fool 
the GP-algorithm as it came to light shortly 
after its first applications.  

Despite the criticism, measures used for 
identifying low-dimensional chaotic 
systems, such as the correlation dimension, 
continue to be used for studying the EEG 
signals. For instance, some authors 
reported decreasing values of D2 with 
deepening of the level of sleep or the level 
of release [2,3,4].  

Now let us return to the most commonly 
used technique for analyzing EEG that is 
Fourier analysis. Regarding spectral 
properties of different types of data the 
next statements are generally accepted: 

Stochastic behaviour: the power spectrum 
decays via a power law P(f)~1/f  γ (γ can be 
obtained as the slope of linear part when 
plotted on a log-log scale) [5].  

Periodic or quasi-periodic behaviour: the 
power spectrum consists of discrete spikes 
corresponding to distinct frequencies.  

Chaotic behaviour: the power spectrum 
falls exponentially at high frequencies [6]. 
Exponential decay of power spectrum is a 
decay of the form P(f)~a.e-bf, where a and 
the exponent b are positive constants. (This 
region is linear when plotted on a log-
linear scale.)  

The above summary shows that the falloff 
of the power spectrum helps us to answer 
the question, whether the observed erratic 
behaviour is essentially deterministic or 
stochastic.  

As the power of EEG spectrum is supposed 
to decrease polynomially, let us mention a 
result that advocate the use of the order of 
the polynomial falloff as a tool for 
dimension estimate. In [7] the authors 
found that for a stochastic time series with 
a 1/f  γ power spectrum, the numerical 
estimate of correlation dimension is a 
small finite value D=2/(γ -1) for 1<γ <3, 
when analysed by the GP-algorithm.  

In the case of EEG, Pereda et al. [4] 
investigated a correlation between the 
spectral exponent and D2. They selected 
the frequency range of 3–30 Hz and found, 
that EEG exhibits random fractal structure 
with 1/f  γ spectrum and a negative linear 
correlation between D2 and γ is present in 
all states except during slow wave sleep. In 
[8] the authors estimated the dimension of 
the sleep EEG in a range from about 6.78 
to about 9.82. The corresponding decay 
rate (computed for frequencies less then 
alpha activity) was in a range 0,98-2.18.  

 

Our aim is to verify declarations about the 
relation between D2 and spectral decay 
exponent. At first we checked the presence 
of exponential or power-law decay in the 
power spectra of EEG. As there seems to 
be no consensus regarding the choice of the 
regions of power-law decay in the 



literature, we studied the whole spectrum 
of EEG to find the sections of clear power-
law decay. 

Thereafter we looked for regions that lead 
to highest linear correlation and mutual 
information between both characteristics.  

Finally, we thought over the discriminating 
power of spectral decay γ and correlation 
dimension, as in the case of equivalence, 
the use of γ can be recommended as more 
effective due to its lower computational 
cost. 

2. Subject and Methods 

Eight healthy volunteers (3 females and 5 
males) took part in EEG recording. 
Participants ranged in age from 24 to 39 
years, with a mean of 25.5 years, s.d. 5.1 
yrs.. They attended 2 measurements per 
each of 25 days. Data of 3-minute length 
were recorded. During recording subjects 
were lying in a darkened, electrically 
shielded room. They were instructed to 
keep their eyes closed and relax both 
physically and mentally. 

8-channel EEG system with scalp-
electrode impedances kept below 5 K 
Ohms was used for data recording. From 
the 8 signals (6 active electrodes and 2 
reference electrodes) six difference signals 
were derived by. A digital high pass FIR 
filter with cut-off at 0.75 Hz, with the 
width of 3000 data points, and with a 
Blackman window was utilized. 

For the purpose of this study, about 2300 
electroencephalograms were analyzed. The 
EEG measures were computed from 3-
minute epochs, which were digitized at 500 
Hz. Following digital filtering the first and 
the last 1500 points were omitted and 
87000 data point EEGs remained.  

3. Results 

In order to calculate the correlation 
dimension, the data were embedded to m-
dimensional space (m=1, 2, …, 20). 

Following the proposal of Takens [9] m-
dimensional vectors built-up from delay 
coordinates were used for the 
reconstruction. The vectors were 
constructed with a time lag τ = 10, which 
corresponds to 5 ms. This value was 
chosen according to the first minimum of 
mutual information between the original 
signal and its shifted versions, meaning, 
that their independence is maximized [10]. 
Then D2 was calculated using the GP–
algorithm.  

The resultant estimates of D2 “saturate”, 
i.e. they approach a constant value as 
embedding dimensions increase above 
m=5. After this manner a significant 
indication of relatively low values of 
correlation dimension (between 3 and 6) 
with the mean of 4.35 was found. 

 

 

 

 

 

 

Fig. 1. Typical graph of correlation dimension 
estimation for EEG. N=87000, m=6. 
Plateau at about 4.1 is apparent.  

Power spectrum was computed using 
standard FFT with frequency step of 0.029 
Hz and variance reduction factor of 10. 
Spectrum presented in lin-log graph shows 
apparent peak of about 10 Hz 
corresponding to brain alpha 
frequency. Similar phenomenon is present 
in log-log graph as well. However, in this 
case frequencies before and after peak fall 
linearly in contrast to lin-log graph. Power 
law decay γ was computed as a slope 
of linear regression applied to the power 
spectrum in log-log graph. Because log 
function condense data points in higher 
frequencies, data should be recalculated 
with respect to homogenous distribution 
along axis x. This can be done using linear 
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re-sampling of interpolated data in log-log 
graph.  

As a result, power-law decay of about 2.28 
prevailing over the exponential falling off 
was established. Fig.2 shows a typical 
graph for decay estimation. Fig. 3. 
illustrates, how successful is power-law 
model in comparison to exponential model. 
 
 
 
 
 
 
 
 
  

Fig. 2. Typical graph of spectral decay estimation 
for EEG. Decay of about 2.28 is visible.  

To evaluate the relationship between the 
correlation dimension estimates and the 
spectral decay we computed linear 
correlation and mutual information of both 
measures. As fig. 3. shows we found 
maximum information (linear correlation 
of 0.73) when spectral decay from the 
whole spectrum (in our case about 5 Hz to 
250 Hz) is taken. Fig. 4. illustrates, that 
both D2 and γ behave in a similar manner 
and they probably reflect the same features 
of EEG data. 

4. Discussion and conclusions 

As our results confirm, to a great extent the 
dimension estimate by GP-algorithm 
reflects some spectral features of signal.  

Despite this fact, the correlation dimension 
may remain usable as one of invariants of 
underlying system. If computed with 
highest caution the estimated value is 
expected to provide a valuable relative, 
generic measure of the dynamical 
complexity of a signal. But it is 
questionable if the correlation dimension 
can be more powerful as the spectral decay. 
Since power spectra can be easily 

calculated with standard algorithms, 
estimating spectral characteristics is 
advantageous in comparison with time 
consuming algorithms to compute the 
correlation dimension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. a) Efficiency of power-law model in 
contrast to exponential model when power 
spectra from fixed 5 Hz to ascending right 
limit of the spectral range is investigated.  
b) Linear correlation between D2 and γ.  
c) Mutual information between D2 and γ. 

 

 

 

 

 

 

 

 

Fig. 4. Averages of spectral decay and correlation 
dimension values in the course of 25 days. 
Computed from 8 subjects EEGs. 
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