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ABSTRACT. A theorem on asymptotic linearity of L-estimates is proved under
general set of regularity conditions, allowing the sampled distribution to be non-
integrable. The main result is the improvement in the order of the remainder term
in the formula for asymptotic linearity of L-statistic. It is shown that in the case of
the integral coefficients this term R,, = OP(%) and the case of functional coefficients

is also covered.
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1 Assumptions and main results

Suppose that Xq,..., X, is a random sample from the distribution of the random
variable X and Xj (1) < X5 () are the order statlstlcs The aim of the paper

)X(i) in a way

n

n+1
useful mainly in the case when X is not integrable. Before stating a theorem on
this topic and discussing its relation with another results we present the regularity
conditions imposed on distribution of X and on the score function J.

(A 1) The distribution function F(t) = P(X < t) is continuous and strictly
increasing on (d, D), where d = inf{t; F(t) > 0}, D = sup{t; F(t) < 1}.

(A 2) The function J : (0,1) — E' possesses the derivative J' on (0,1) and

is to prove the asymptotic linearity of the L-estimate — Z J(

(0,
p= ]/J' wdu = E Qmppx»x) (1)
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s a real number.
(A 3) There ezist real numbersy = v4 > —2, K > 0 such that for eachu € (0, %>

)] < Kul ™, | ()] < K
There exist real numbers v = vp > —2, K > 0 such that for each u € <%, 1)
[J(w)] < K1 —u)'™7, [T (w)] < K(1-u)".

(A 4) There exist real numbers kg < v4+1, kp < vp + 1 such that the integrals

1/2 m 1 oo
/W dF~1(u) = /F"‘d(w) dz /(1 —u)"P dF~ / )5P dz
0 —00 1/2 m

are real numbers (here m denotes the median of F).
(A 5) For every real number x the integrals

/yJ | dy /H )dF (x /J y) dy

are real numbers and F(x)H(z) — 0 as |x| — +00.

Theorem 1 Suppose that (A 1) - (A 5) hold and put

+o0 +oo
va) = [ IEGFG Ay~ [ IE@)dy. 2)

(I) Let .
Ly= zn:amxrgﬁ, Cni = / J(u) du (3)

i=1 im1

Then (cf. (1))
Lp=p+— Zw ) + Op( 1) (4)
(II) Put
. (i 1 i

Ln_;cm)gg), cm—ﬁJ(n_i_l). (5)

In addition to (A 1) - (A 5) suppose also that for some tq,tp € (d, D) and some
positive real numbers By, Bp the inequalities

sup{|z|P4F(z); d < z < tq} < 400,

(6)
sup{|z|’P (1 — F(x)); tp < & < D} < +o0
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hold. If

1 1
51:2+’}/d—@>0, 52:2+'}/D—67D>O, (7)

then
Ln—u—i-ni_Elw(XZ)-i-Rn, (8)

where
op(b%) . min{o, ) =1,
R, = 9)
(’)p( §*> otherwise .

Here (cf. (7))
5* = min{l 5 61 ,52} . (10)

Note that if d < D from (A 1) are real numbers, then (6), (7) hold, F(x)H (z) —
0 as |x| — +oo and (A 3) implies that the integral (1) is finite.

Let the assumptions of the previous theorem be fulfiled. Then for the function

+oo +o0o
(2) the equality [ w(x)dF(x) = 0 holds and if V = [ ¢?(z)dF(z) < oo,
—0o —0o0
by means of the central limit theorem one obtains that /n(L, — u) — N(0,V)
in distribution as n tends to infinity. Moreover, if also for the remainder term
R, from (9) the equality R, = op(n~'/2) holds, then \/n(L — u) — N(0,V) in
distribution.

A review of results on the asymptotic normality of L-estimates can be found
in the monograph of Serfling [7]. General results on this topic are proved by
Chernoff, Gastwirth and Johns [1] under set of conditions, which are of
general nature but may be not easy to verify. The asymptotic linearity of L-
estimates with the remainder term R,, = Op(%), from which the asymptotic nor-
mality follows by CLT, has been proved in section 4 of Jureckova and Sen
[3]. But for the L-statistics with the integral coefficients (3) and the number 5 < 1
from (6) they assume in their Theorem 4.3.1 that the untrimmed score function
J fulfils the Lipschitz condition of the order v > 1, which in typical cases is not
fulfilled, and for the statistics with the functional coefficients (5) the exponent
is in their Theorem 4.3.2 assumed to be greater than 1. Govindarajulu and
Mason [2] proved the asymptotic linearity of the L-statistics even in a setting
allowing X not to be integrable, but in difference from the previous theorem only
with the remainder term R,, = OP(ﬁ). The remainder term in this paper has bet-
ter accuracy than this result both for the L-statistics with integral coefficients and
with functional scores as well, and the conditions (A1)-(A5) can be applied also in
cases not covered by the conditions from Govindarajulu and Mason. An-
other results for strong representation of L-statistics were proved by Mason and
Shorack [4] and [5], but again with R,, = Op(ﬁ). Thus the main contribution
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of the previous theorem is the improvement in remainder term in the formula for
the asymptotic linearity of the L-estimates in the case when 8 < 1, which occurs
in the case when X is not integrable.

2 Proofs

In accordance with the assumptions of Theorem 1 throughout this section we as-
sume that the assumptions (A 1) - (A 5) hold and we use the notation F~!(u) =
inf{z; F(x) > u}. Further, Uy,...,U, denotes a random sample from the uniform
distribution on (0, 1) and

n

i=1
its empirical distribution function. In the proofs we shall use the function

1

(b(s):—/J(u)du—i—/uJ(u)du, s€(0,1), (11)
0

s

and the fact, that under the validity of (A 2) the equality ¢ (s) = J(s) holds. The
symbol K will denote the generic constant, i.e., it will not depend on n but even
though the symbol remains the same, it may denote various values.

Proof of Theorem 1(I). Since the condition (A 4) holds, the integrals

+o0

/ Pla)y+2dg, / (1— F(z))>*+2dz

t

are finite for every real number ¢t € (d, D). Thus for the empirical distribution
function

1 n
Faw) = S x oo (X0)
j=1

+o0
the integral [ (¢(Fpn(x)) — ¢(F(x)))dx is finite, and making use of the integration
—00

by parts and proceeding similarly as described on p. 144 of [3], one obtains that

1
Lu—n= 33 00X = [ Vals)aF ().
0

n
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where
V()| = |9(Un(s)) — ¢(s) — ¢'(s)(Un(s) — s)| .-
1
)

By Theorem 2.11.10 of [6] given n € (0
for every real number M > 0

P( Vi(Uas) =) >M) - Cl)

) there exists a constant C'(n) such that

ooat (s(1— s))l/zn =2

for all integers n > 1. Hence if ¢ > 0 and n € (0, 1/2) then there exists a number
M > 0 such that with probability at least 1 — ¢

sup ‘\/ﬁ(Un(S) _ 8> <M. (12)

o<s<1 (s(1—s))t/2=n =

Further, employing the Daniels theorem from p. 345 of [8], one obtains that

sp 2 _0,a),  sup 12Ue8)
se(0,1) S se(0,) 1—s

= OP<1)7
the Wellner-Shorack inequality from p. 415 of [8] implies that
s
— U, >0,s<1y=0p(1),
sup { 5557 Unls) > 0,5 < 1 = 00 (1)

SuP{l—l_U:(s); Un(s) <1,s> O} =0p(1).

Hence given € > 0 there exist positive constants a1, ao, b1, bs such that for all n
with probability at least 1 — ¢

Un(s) >0, s€(0,1) = a1s < Uyp(s) < azs, (13)
Un(s) <1, s€(0,1) = b1(1 —5) <1—=Uy(s) <ba(1—35). (14)
Thus it is sufficient to prove that for a suitably chosen n € (0, %) under the validity

of (12), (13) and (14)
1

/|Vn(s)|dF1(s) _ 0(%) . (15)
0

In proving this we shall utilize the fact, that for any 0 < o < 1 and positive real

numbers c;, co the inequality

(a1 + (1 — a)e)” < ¢ + ¢ (16)

holds.
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Let 0 < § < 1/2 be a fixed real number, s € (0,0) and v = 74. Assume that
U,(s) > 0. An application of Taylor theorem, (A 3), (12), (13) and (16) yields that

Va(s)| = J’(as+(1 _a)Un(S))‘W
< %(as + (1 - a)Un(S)>‘YS2(1/2—n)
< %(S’Y + Un(s)"*)sl*?"
< 587—1—1—271.

Similarly if U, (s) = 0, then

Va(s)l = [¢(0) — ¢(s) + ¢/ (s)s]

IN

/]J(u)| du + K572
0

S
< K/@ﬂ“ du+ Ks"2 < K712
0

K
= Ks"(s—Upy(s))? < —s7T1721,
n
Thus owing to (A4)
0 0 i K
/|Vn(s)\ dF~1(s) < /S'Y+1277 dF~1(s) < —.
n n
0 0

Since for s € (d,1) one can proceed similarly, (15) is proved.

In the rest of the section we assume that in addition to (A 1) - (A 5) also the
inequalities (6), (7) hold for some positive real 34, Sp and some t4,tp € (d, D).

The proof of the assertion (II) of the theorem from the previous section will be
based on the following auxiliary assertions.

Lemma 1 Let U,gj) denotes the jth order statistics from Uy,...,U,. Then for
every positive real number c

n—00 n—00 n n

lim PUW < Sy=1-¢, lim PO™>1- S)=1—ec.
n
Lemma 2 For each u € (0,1)

K K
ul/Ba’ (1 — u)l/fp b

]Ffl(u)\ < max{
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Lemma 3 Suppose that the number (cf. (7))

5 = min{51 ,62} (17)
1s positive. For ¢ > 0 put
c c
n = H, =1-—.
hie) = C, Hae)=1-¢
(I) The equality
hn(c) 1
—1 -1 1
/ () P ()] du + / ) F ()] du=0( ) (18)
0 Hy(c)
holds.
(II) Define the function Jp(u) on (0,1) by the formula
7 1—1 )
= f — < — ,=1,...
In(u) J(n—i—l) if - <u_n7 i=1,...,n, (19)
and put
1/2 Ha(c)
RO = [ 1) J@IF @ de, B = [ L) = )| @) du.
hn(c) 1/2
(20)

Then with the notation from (7)

R { O(ﬁ) & =min{l, &} & A1, o
0(“1%”) 5 =1,

R { (’)(ﬁ) L5 =min{l, 6} Gy £1, )
0(105") Sy =1.

Proof. The proof of (I) easily follows from (A 3), (6) and (7). If A € (0, 1), then
one can prove by means of (A 3) and (16) that for each u € (£, \) the inequalities

<
n

)~ el < (LAY o) < B ek o)

hold (here |a]| denotes the largest integer not exceeding a). Employing (6) and (7)
after some computation one obtains the formula (21), (22) can be proved analo-
gously. (Il
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Lemma 4 Suppose that I denotes for s € (0,1) the interval with the endpoints s,
Un($), i.e., Iy = (s,Un(s)) if s < Up(s) and Iy = (Uy,(s), s) otherwise. Then in the

notation from the previous lemmas

u™
/ /|J J(w)|du) dF(s) = op(%).
(1) Is

Proof. Lemma 1 implies that given € > 0 there exists a positive constant ¢ such

that for all sample sizes n sufficiently large

1 c 1 c

>yl >=— Z<cum<r- = 24
with probability at least 1 —e. Therefore we may assume that the inequalities (24),
(13) and (14) are fulfilled. Further, according to the Glivenko-Cantelli theorem we
may assume that for all n > ng and s € (0, %> the inequalities Uy, (s) < % +e* <1
hold. Thus employing (24) and (13) we obtain the validity of (23) on the interval
I, for each s € (Ufll), 1), and the repeated use of (13) yields that

1/2 1/2
1
Ya+1 — -
//|J |du dF / 2 gt gpl(s) Op(n),
oo o

where the last equality follows from (A 4). Since the statement

1
/ /\J \du)dF (s) = 0P<5)
12 I
can be verified similarly, the lemma is proved. [l

Proof of Theorem 1(II). Let F,, denote the empirical distribution
function of Xi,..., X, and (cf. (19))

1 1
——S/Jn(u)du—i—o/an(u)du, 5€(0,1).

Then for the statistic (5) the equality

“+00

Qz/mwwwm (25)

—0o0
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holds. Put U; = F(X;), i = 1,...,n. As the set having the probability not
exceeding ¢ can be neglected, according to Lemma 1 we may assume that for
properly chosen positive ¢; < ¢g

P < XM <P, Fa-2)<x <P,
n n n n (26)
Xleil(F(Xz)), 1=1,...,n.

Put
U™
o, = / Jo(uw)F~ () du.
Ul
By means of the continuity of F
FYu™) FH ™)
po= [ BE@RIF@ = [ eds(Fa),
F-1(U) FLUY)
because for a < b
F(b) b
Pn(F(0)) — on(F(a)) = [ Jn(u)du = /Jn(F(ﬂf))dF(x%
Fl(a) a

Since the product of right-continuous functions of bounded variation has also this
property, the function G(x) = z[p,(F,(z)) — ¢n(F(x))] induces a signed measure
vg. Thus making use of the integration by parts one obtains

ipn= [ 2d[6u(Fula)) = 6u(F@)] = va( (X0, X)) - .
(M, x5
where the second term

x(
L = | [6u(Fu@) = 6u(F(2)) da

xS
F(X{)

= [ [oulPuFTH(9) = on(FFH(9)] aF L (s)
P(xY)
Uy

= [ [#0(Un(s) = 6u()] aF1(s).

Uy

Hence if we show that

va((XD, X)) = 0p (), (27)

n
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where § is defined in (17), we obtain that

Uy
L= =0e(55) = [ (on0n(e) = 0n(0)) aF ') (29)
Uy

But

U
= ;i?m 26 (0) — ¢ (F(2))] = XV [0 (0) — o (F(X )]
§ »
— ) / T () du (30)

Assume without the loss of generality that co > 2. Then by (A 3)

1

1 . i
/|Jn(u)|du < / Tn(uw)du< | T ()] du

o™ 1-2 =nleal o

A

IN
S
iNgE
/N
|
3
+ ~
—_
N—
e
2
S)

1=

<

K [ea]+1 Z'1+’YD K
n

— n1+'YD - n2+'7D'
1=

This together with (29), (26) and Lemma 2 means, that

1
K 1 K
(n) =1y
GO < E O [ Ml < e

U

(31)

Further, since according to (26) the inequality Ul < 2 holds, by means of (A 2)
) [eo]+1

n n [02]"1‘1 .
K 1 I+7q K
< < — <
0 0 =
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Combining this with (30), (26) and Lemma 2 one obtains

G < D) [ In@ldes —E < B @)
(Uél))@n Yd n2+7d*%

Obviously, (31) and (32) imply (27) Further, L,, = [ 2 d¢(F,(x)), where ¢ is defined
n (11). This together with (18), (26) and integration by parts similarly as in (28)
means that

ulm
b —n=0p(5) - / [6(Un(s)) — 0(5)] dF1(5). (33)
Uy

Taking into account (28), (33) and Lemma 4 one obtains that
(n)

(L= )~ (Lu -] < Op(%)+ / /u w)|du) dF~1(s)

OIS
1
- Op(n(s* > ’

(34)
where ¢* is defined in (10). But by means of (26) and Lemma 3
U(”)
1
My</u )| [P ()l du+ O(-) < RO + RO+ 0(), (39)
e

where Rg), (2) are defined by (20) with ¢ = ¢1, and (8) — (10) can be obtained
from (34), (35), (21), (22) and (4). O
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