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Abstract

Two different problems reflecting brain functioning are addressed: Impact of audio-visual
stimulation (AVS) on human EEG and EEG characteristics of human relaxation. Within subtle
physiological changes, number of linear and nonlinear measures is examined for their sensitivity.
Standard, modified and newly designed EEG measures are employed.

• In order to identify direct, transient, as well as long-term changes in human cortex under
influence of repetitive impact of AVS various linear and nonlinear measures were estimated. In
the course of 2 months, 25 repetitions of a 20 min AVS program with stimulation frequencies
in the range 2-18 Hz were applied to 6 healthy volunteers. EEG data were recorded from 6
head locations during relaxed wakefulness prior, during and after AVS. Entrainment as a direct
reaction to AVS was well developed in majority of cases, being strongest in backward regions and
spreading also to other cortex locations. Transient effects displayed significant power decreases of
beta bands, and increase of theta-1 and alpha-1 coherence in central cortex regions. For long-term
effects evolution of examined measures during the whole experiment period was analyzed with
respect to the significance of their linear regression. Following changes were observed: increased
power in lower frequency bands (4-10Hz) in frontal and central cortex locations, increased spectral
decay over the whole cortex, decreased correlation dimension in some locations, and increased
frontal inter-hemispheric alpha-1 coherence in contrast to decrease of linear correlation and mutual
information. Our results show that regular training with AVS does induce changes in the cortex
functioning, such as those commonly reported to be features specific to relaxation or altered states
of consciousness. It seems that AVS training could be more effective in inducing long-continuint
changes of EEG than regular 20 minute listening to relaxation music.

• Psychophysiological characteristics of psychosomatic relaxation are addressed. Experiment
consisted of 88 relaxation sessions of 8 subjects. 6-channel EEG data of 3-minute duration were
examined. Firstly EEG characteristics of rest were revealed in a form of linear regression trends.
On the contrary to general expectations, during resting conditions - 3-minute session in darkened
room in lying position with eyes closed - both alpha-1 and relative alpha-1 powers were decreasing.
Decrease of total power over the whole cortex implied gradual diminishing of overall brain activity
during the resting process. Then EEG features derived from linear regression model were selected
according their ability to discern between more and less successful relaxation. Recordings were
categorized into 2 categories formed according to subjective assessments of participants. Quite a
few features pointed to lower contribution of the slowest waves (delta-1 range) in some cortex areas
as a distinctive characteristic of more successful relaxation. Finally, EEG feature selection for
practical recognition of two relaxation classes is presented. Discriminant analysis was employed
in a form of Fisher classifier and artificial neural networks. Under restriction to ten feature
dimensions, promising results of feature selection yielded total classification error 12 - 16 %.
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With permission up to 25 dimension, error of 3 - 4 % was achieved for training set cardinality
0.9. Newly explored relaxation features fill the lack of EEG relaxation characteristics in the
literature. The promising results of this exploratory study might progress into EEG descriptors
of resting states and in combination with some other non EEG indicators they may contribute
to discrimination of relaxation levels. Potential applications involve clinical, pharmacological,
self-regulative areas and actual problems with stress management.
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Introduction

In the area of psychophysiology two different problems reflecting brain functioning are

attacked. These are brain response to audio-visual stimulation and brain characteristics

during relaxation. The common aspect of both problems is monitoring of brain activity

through electroencephalogram recordings from the scalp.

We provide more detailed introduction to the investigated problems in the individual

parts of the thesis; however, here we would like to present basic background for studied

problems. Modern medicine applies variety of imaging techniques of the human body.

The group of electro-biological measurements comprises variety of methods. From them,

electroencephalography is a medical imaging technique that reads scalp electrical activity

generated by brain structures. During more than 100 years of its history, encephalography

has undergone massive development. Firstly, brain waves were explored and gradually

their dependence on physiological conditions was revealed. Waves were classified into

different groups according to their wavelength. Nowadays EEG atlases are provided, filled

with different brain-waive patterns and respective diagnoses. EEG belongs to established

clinical diagnosis tools. However further understanding of brain functioning is still very

actual for widening horizons of both theoretical and practical knowledge.

Audio-visual stimulation (AVS) is a simple method for external influence of the brain.

Cortex activity might be manipulated to certain extent by brain wave entrainment mech-

anisms. AVS is rather popular and also experimentally tested for improvements in various

clinical conditions. Photic driving response was proven to be useful for investigation of

neurological disorders, such as Alzheimer disease, schizophrenia, or depressions.

However, some findings concerning the rhythmic brain activity as a reaction to AVS

seem to be inconsistent. The main purpose of the first part of this study was to investigate

the effects of AVS on the EEG on the immediate, short-term, and long-term basis. Up to

1



1. INTRODUCTION 2

now, most of the EEG research on AVS has focused on direct and short-term effects of AVS

(during and shortly after the stimulation). To our knowledge, this is the first study dealing

with EEG features under repetitive stimulation sessions during a longer time period.

Reasons for the second part of the study are related to actual problems of stress that

is acknowledged to belong to one of the major problems of modern society. While call-

ing for stress reduction, need for stress-monitoring tools might be growing. Analyses of

resting status of patients could be related to sleep deprivation or stress reduction prob-

lems. Developed method could also be beneficial in development and testing of efficiency

of pharmacological substances related to hypnotic and sedative drugs, and for assistance

in biofeedback during self-regulative trainings.

There are a few physiological variables, which might be sensitive to level of physical

and mental rest. However in the literature we had found no clear characterization of EEG

features of relaxation. In order to explore EEG dynamics and basic features during relax-

ation, our aim was to find the strongest changes in EEG measures during general rest and

then to discern beneficial relaxation from unsuccessful relaxation by another EEG features.

And finally we present an implementation for recognition of two relaxation categories by

means of feature selection and discriminant analysis with Fisher classifier and artificial

neural networks.

Moreover, we have utilized both linear and nonlinear approaches for analysis of EEG

characteristics. In contrast to the linear description (as e.g., frequency analysis), it is

natural to expect that the neuronal dynamics may behave in a non-linear manner. The

growing need for a better understanding of brain dynamics and the recent emergence of

a physics of non-linear systems have stimulated the development of more advanced data

analysis techniques, often referred to as non-linear methods. Traditional signal-processing

procedures (as for example Fourier analysis) reflect information about one-dimensional time

series. On the other hand, the dynamical view suggests that a single time series may be

seen as a manifestation of more-dimensional dynamics of the whole system. Under certain

conditions, it is possible to reconstruct behaviour of a dynamical system from a single

variable like the single-channel EEG. Then, the reconstructed dynamics is analyzed with

non-linear methods. Although the applicability of these techniques to real systems has been

questioned repeatedly (Paluš et al., 1999), it is generally accepted that some non-linear

measures might be useful if used with care. Complexity measures related to the concept

of entropy rates estimation were reported by Rosipal (2001) to be useful for determining

depth of anaesthesia. Results by Kobayashi et al. (2000) showed successful discrimination

of sleep stages by measure of correlation dimension. AVS examined by Jin et al. (2002)

had decreasing effects on EEG complexity, shown by the first positive Lyapunov exponent
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as one of non-linear measures of complexity. These and similar findings indicate that non-

linear measures may be as good or even better in discrimination of brain states, compared

to the existing, mainly spectrally based techniques. For comparison of an efficiency of

linear and non-linear approaches, we used both of them for EEG data analyses in this

thesis.

This work is organized in the following way. In the second chapter history, brain

waves, and applications of EEG are introduced. Then EEG measuring techniques are

described. After that linear and nonlinear methods for EEG analysis are addressed in the

fourth chapter. In the following Part A AVS experiment along with results are addressed.

Results are provided for direct, transient, and long-term AVS effects. Part A is concluded

by discussion. Part B starts with chapter 6 and it deals with EEG characteristics of

relaxation. After methods are described, results are provided for measures’ trends reflecting

general rest, EEG features capable to distinguish between two relaxation categories, and for

feature selection with discriminant analysis of two relaxation classes. Discussion finalizes

part B. Then follows sumarization of results and contribution for praxis. The work is

concluded by appendixes containing additional illustrations.
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1.1 Goals of the thesis

Goal of this thesis is to investigate two psycho-physiological problems:

- Effects of audio-visual stimulation (AVS) on human cortex activity.

- Effects of psychosomatic relaxation.

In the context of the two tasks performance of untraditional EEG measures has to be

compared to traditional ones.

Specifically, main tasks of this thesis are listed bellow:

• Revelation of unique EEG characteristics during brain AVS training:

- Impact of AVS directly during stimulation in different frequency bands, and long-term

evolution of direct impact.

- Transient effects of AVS (a few minutes after AVS influence) and their time progress.

- Long-term effects of AVS from the perspective of the whole AVS training.

• Investigation of efficiency of linear and nonlinear measures for EEG analysis in the

context of AVS.

- Design of modified and new EEG measures.

• Testing the effects of popular AVS device on the subjective

states of participants.

• EEG characteristics during human psychosomatic relaxation:

- Regression trends of EEG measures during sensori-motorical rest.

- Selection of EEG features discriminating two relaxation categories based on subjective

assessments of participants.

- Classification of the relaxation level: Feature selection with discriminant analysis in

a form of Fisher classifier and artificial neural networks.

• Development of complex Octave/Matlab software implementation for EEG process-

ing and analysis.
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EEG: History, brain waves,

applications

Modern medicine applies variety of imaging techniques of the human body. The group of

electro-biological measurements comprises items as electrocardiography (ECG, heart), elec-

tromyography (EMG, muscular contractions), electroencephalography (EEG, brain), mag-

netoencephalography (MEG, brain), electrogastrography (EGG, stomach), electrooptigra-

phy (EOG, eye dipole field). Imaging techniques based on different physical principles in-

clude computer tomography (CT), functional magnetic resonance imaging (fMRI), positron

emission tomography (PET), and single photon emission computed tomography (SPECT).

Electroencephalography is a medical imaging technique that reads scalp electrical activ-

ity generated by brain structures. The electroencephalogram (EEG) is defined as electrical

activity of an alternating type recorded from the scalp surface after being picked up by

metal electrodes and conductive media (Niedermeyer and da Silva, 1993).

The EEG measured directly from the cortical surface is called electrocortiogram while

when using depth probes it is called electrogram. In this chapter we will refer only to EEG

measured from the head surface. Thus electroencephalographic reading is a completely

non-invasive procedure that can be applied repeatedly to patients, normal adults, and

children with virtually no risk or limitation.

When brain cells (neurons) are activated, local current flows are produced. EEG mea-

sures mostly the currents that flow during synaptic excitations of the dendrites of many

pyramidal neurons in the cerebral cortex. Differences of electrical potentials are caused by

summed postsynaptic graded potentials from pyramidal cells that create electrical dipoles

between soma (body of neuron) and apical dendrites (neural branches). Brain electrical

5



2. EEG: HISTORY, BRAIN WAVES, APPLICATIONS 6

current consists mostly of Na+, K+, Ca++, and Cl− ions that are pumped through chan-

nels in neuron membranes in the direction governed by membrane potential (Atwood and

MacKay, 1989a).

The detailed microscopic picture is more sophisticated, including different types of

synapses and involving variety of neurotransmitters (Malmivuo and Plonsey, 1995). Only

large populations of active neurons can generate electrical activity recordable on the head

surface. Between electrode and neuronal layers current penetrates through skin, skull and

several other layers. Weak electrical signals detected by the scalp electrodes are massively

amplified, and then displayed on paper or stored to computer memory (Tyner and Knott,

1989). Due to capability to reflect both the normal and abnormal electrical activity of the

brain, EEG has been found to be a very powerful tool in the field of neurology and clinical

neurophysiology.

The human brain electric activity starts around the 17-23 week of prenatal develop-

ment. It is assumed that at birth the full number of neural cells is already developed,

roughly 1011 neurons (Nunez, 1995). This makes an average density of 104 neurons per

mm3. Neurons are mutually connected into neural nets through synapses. Adults have

about 500 trillion (5.1014) synapses. The number of synapses per one neuron with age

increases, however the number of neurons with age decreases, thus the total number of

synapses decreases with age too. From the anatomical point of view, the brain can be

divided into three sections: cerebrum, cerebellum, and brain stem. The cerebrum consists

of left and right hemisphere with highly convoluted surface layer called cerebral cortex.

The cortex is a dominant part of the central nervous system. The cerebrum comprises

centres for movement initiation, conscious awareness of sensation, complex analysis, and

expression of emotions and behaviour. The cerebellum coordinates voluntary movements

of muscles and balance maintaining. The brain stem controls respiration, heart regulation,

biorhythms, neurohormone and hormone secretion, etc.(Fundamentals of Biomedical Engi-

neering. Electroencephalogram, 2002). The highest influence to EEG comes from electric

activity of cerebral cortex due to its surface location.

2.1 History

During more than 100 years of its history, encephalography has undergone massive

development. The existence of electrical currents in the brain was discovered in 1875 by an

English physician R. Caton. Caton observed the EEG from exposed brains of rabbits and

monkeys. In 1924 H. Berger, a German neurologist, used his ordinary radio equipment to
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amplify the brain’s electrical activity measured on the human scalp. He announced that

weak electric currents generated in the brain can be recorded without opening the skull, and

depicted graphically on a strip of paper. The activity that he observed changed according to

the functional status of the brain, such as in sleep, anaesthesia, lack of oxygen and in certain

neural diseases, such as in epilepsy. Berger laid the foundations for many of the present

applications of electroencephalography. He as the first used the word electroencephalogram

for describing brain electric potentials in humans. He was right with his suggestion, that

brain activity changes in a consistent and recognizable way when the general status of the

subject changes, as from relaxation to alertness (Bronzino, 1995). Later in 1934 Adrian and

Matthews published the paper verifying concept of “human brain waves” and identified

regular oscillations around 10 to 12 Hz which they termed “alpha rhythm” (Bronzino,

1995).

2.2 Brain waves classification

For obtaining basic brain patterns of individuals, subjects are instructed to close their

eyes and relax. Brain patterns form wave shapes that are commonly sinusoidal. Usually,

they are measured from peak to peak and normally range from 0.5 to 100 µV in amplitude,

which is about 100 times lower than ECG signals. By means of Fourier transform power

spectrum from the raw EEG signal is derived. In power spectrum occurence of sine waves

with different frequencies is visible. Although the spectrum is continuous, ranging from 0

Hz up to one half of sampling frequency, the brain state of the individual may make certain

frequencies more dominant. Brain waves have been categorized into four basic groups (Fig.

2.1):

- beta (>13 Hz),

- alpha (8-13 Hz),

- theta (4-8 Hz),

- delta (0.5-4 Hz).

The best-known and most extensively studied rhythm of the human brain is the normal

alpha rhythm. Alpha can be usually observed better in the posterior and occipital regions

with typical amplitude about 50 µV (peak-peak). According to our experiences alpha was

also significant between posterior and central regions in comparison to other regions. Alpha

activity is induced by closing the eyes and by relaxation, and abolished by eye opening

or alerting by any mechanism (thinking, calculating). Most of persons are remarkably

sensitive to the phenomenon of “eye closing”, i.e. when they close their eyes their wave
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Figure 2.1: Brain wave samples with dominant frequencies belonging to beta, alpha, theta,

and delta band.

pattern significantly changes from beta into alpha waves. The precise origin of the alpha

rhythm is still not known. Alpha waves are usually attributed to summated dendrite

potentials. Evoked potentials (e.g. generated in brain stem) often consist of fibre potentials

(axonal) and synaptic components (Bickford, 1987).

EEG is sensitive to a continuum of states ranging from stress state, alertness to resting

state, hypnosis, and sleep. During normal state of wakefulness with open eyes beta waves

are dominant. In relaxation or drowsiness alpha activity rises and if sleep appears power of

lower frequency bands increase. Sleep is generally divided into two broad types: nonrapid

eye movement sleep (NREM) and REM sleep. NREM and REM occur in alternating

cycles. NREM is further divided into stage I, stage II, stage III, stage IV. The last two

stages correspond to deeper sleep, where slow delta waves show higher proportions. With

slower dominant frequencies responsiveness to stimuli decreases.

Various regions of the brain do not emit the same brain wave frequency simultaneously.

An EEG signal between electrodes placed on the scalp consists of many waves with different

characteristics. A large amount of data received from even one single EEG recording

presents a difficulty for interpretation.

Individual’s brain wave patterns are unique. In some cases, it is possible to distinguish

persons only according to their typical brain-wave activity. For example, subjects who

regard themselves as rational types or as holistic/intuitive types may demonstrate certain

higher activity in their frontal left and frontal right hemisphere respectively.
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2.3 Applications

The greatest advantage of EEG is speed. Complex patterns of neural activity can

be recorded occurring within fractions of a second after a stimulus has been administered.

EEG provides less spatial resolution compared to fMRI and PET. Thus for better allocation

within the brain, EEG images are often combined with MRI scans. EEG can determine

the relative strengths and positions of electrical activity in different brain regions.

According to R. Bickford (Bickford, 1987) research and clinical applications of the EEG

in humans and animals are used to:

(1) monitor alertness, coma and brain death;

(2) locate areas of damage following head injury, stroke, tumour, etc.;

(3) test afferent pathways (by evoked potentials);

(4) monitor cognitive engagement (alpha rhythm);

(5) produce biofeedback situations, alpha, etc.;

(6) control anaesthesia depth (“servo anaesthesia”);

(7) investigate epilepsy and locate seizure origin;

(8) test epilepsy drug effects;

(9) assist in experimental cortical excision of epileptic focus;

(10) monitor human and animal brain development;

(11) test drugs for convulsive effects;

(12) investigate sleep disorder and physiology.

Symmetry of alpha activity within hemispheres can be monitored. In cases of re-

stricted lesions such as tumour, hemorhage, and trombosis, it is usual for the cortex to

generate lower frequencies. EEG signal distortion can be manifested by reduction in am-

plitude; decrease of dominant frequencies beyond the normal limit; production of spikes

or special patterns. Epileptic conditions produce stimulation of the cortex and the ap-

pearance of high-voltage waves (up to 1000 µV) referred to as “spikes” or “spike and

wave” (Bickford, 1987). EEG patterns have been shown to be modified by a wide range

of variables, including biochemical, metabolic, circulatory, hormonal, neuroelectric, and

behavioural factors (Bronzino, 1995). By tracking changes of electric activity during such

drug abuse-related phenomena as euphoria and craving, brain areas and patterns of activity

that mark these phenomena can be determined.

As the EEG procedure is non-invasive and painless, it is being widely used to study the

brain organization of cognitive processes such as perception, memory, attention, language,
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and emotion in normal adults and children. For this purpose, the most useful application

of EEG recording is the ERP (event related potential) technique.

Evoked potentials

Evoked potentials or event-related potentials (ERPs) are significant voltage fluctuations

resulting from evoked neural activity. Evoked potential is initiated by an external or

internal stimulus (Bickford, 1987). ERPs are suitable methodology for studying the aspects

of cognitive processes of both normal and abnormal nature (neurological or psychiatric

disorders (Picton et al., 2000)).

Mental operations, such as those involved in perception, selective attention, language

processing, and memory, are proceed over time ranges in the order of tens of milliseconds.

Whereas PET and MRI can localize regions of activation during a given mental task, ERPs

can help in defining the time course of these activations (Facts on ERP, 1995).

Amplitudes of ERP components are often much smaller than spontaneous EEG compo-

nents, so they are not to be recognized from raw EEG trace. They are extracted from set

of single recordings by digital averaging of epochs (recording periods) of EEG time-locked

to repeated occurrences of sensory, cognitive, or motor events (Gevins and Rmond, 1987).

The spontaneous background EEG fluctuations, which are random relatively to time point

when the stimuli occurred, are averaged out, leaving the event-related brain potentials.

These electrical signals reflect only that activity which is consistently associated with the

stimulus processing in a time-locked way. The ERP thus reflects, with high temporal

resolution, the patterns of neuronal activity evoked by a stimulus.

Quantitative electroencephalography

Technological advances increased ability of encephalography to read brain activity data

from the entire head simultaneously. Quantitative EEG (QEEG) applies multi channel

measurements that can better determine spatial structures and localize areas with brain

activity or abnormality. The results are often used for topological brain mapping repre-

sented with colour maps in 2D and 3D to enhance visualization.

Brain computer interface

Brain computer interface (BCI) is a communication system that recognizes user’s com-

mand only from his or her brainwaves and reacts according to them. For this purpose PC
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or/and subject is trained. Simple task can consist of desired motion of an arrow displayed

on the screen only through subject’s imaginary of the motion of his or her left or right

hand. As the consequence of imaging process, certain characteristics of the brainwaves

are raised and can be used for user’s command recognition, e.g. motor mu waves (brain

waves of alpha range frequency associated with physical movements or intention to move)

or certain ERPs.

EEG Biofeedback

The basic mechanism of the feedback is to correct the course of a process, intervening in

a previous point of its development or cycle. Originally the knowledge about the operation

of the Autonomic Nervous System (ANS) was that it commands a group of unconscious,

involuntary and autoregulated biological functions. In the 1960s, the experimental psy-

chologist Miller manifested (Miller, 1971) that some biological functions under the control

of ANS could be manipulated and placed under conscious control through instrumental

learning. He expected that if there was an indicator revealing the state of some of those

functions, it would be possible to condition it, in the same way as it would be possible

to condition the functions of the Somatic Nervous System. Biofeedback is a technique to

learn voluntary control of physiologic functions of which the subject is usually not aware,

with the purpose of recovering, maintaining or improving health and/or performance.

The classical modalities of biofeedback are the electrodermal (skin resistance), thermal,

the electromyographic, electroencephalografic (neurofeedback), heart biofeedback, and res-

piratory biofeedback.

Neurofeedback is a brain biofeedback with online EEG monitoring serving as input

information for a subject who is trained. It is suggested that this learning procedure may

help a subject to modify his or her brainwave activity. One of the methods involved in

neurofeedback training is the so-called frequency following response: Changes in the func-

tioning of the brain in desired way, e.g. increases in alpha activity, generates appropriate

visual, audio, or tactile response so that the practitioner can be aware of the right direction

of the training.

Biofeedback was reported as promising approach with possible broad application field.

Treatment of ADHD, epilepsy, addictions, as well as sleep and learning disorders have been

found as most promising applications of EEG biofeedback (Lubar, 1989; Sterman, 1996;

Tansey, 1985). Biofeedback in general was either experimentally or routinely applied to:

Manifestations of stress, fatigue and syndrome of chronic fatigue, anxious states, phobias,

syndrome of panic, obsessive-compulsive disturbance, depression, learning disabilities, es-



2. EEG: HISTORY, BRAIN WAVES, APPLICATIONS 12

pecially those related to attention deficit with or without hyperactivity (ADD/ADHD),

alcoholism and drug addiction, migraine and tension headaches, chronic back pain, in the

nape and shoulders, etc., essential arterial hypertension, heart arrhythmia, muscle problems

like sprain, bruxism, repetitive strain injuries, etc., rehabilitation in sequels of stroke (spas-

tic or flaccid), cerebral concussion, cerebral palsy, asthma and allergic diseases, Raynaud’s

disease, insomnia, fecal and urinary incontinence, self-healing in general. Further to nor-

mal (non pathological) conditions as: relaxation, stress reduction, pain management, sleep

improvement, enhancement of memory, intuition, creativity, IQ improvement, accelerated

learning, peak performance (e.g. for sport), accessing anomalous states of consciousness.

Enhancement of the ability to access and maintain different states of physiological arousal

(mind states) might alter subjects’ mental performance, normalize behavior, and stabilize

mood. EEG biofeedback may be also used as a training technique for Brain Computer

Interface (see 3.3.3).

Critchley and co. systematically addressed the question of brain activity in relation to a

subject’s intention to relax, both with and without the aid of biofeedback (Critchley et al.,

2001). They used PET to investigate cerebral activity relating to the cognitively driven

modulation of sympathetic activity. Their subjects were trained to perform a biofeedback

relaxation exercise that reflected electrodermal activity and were subsequently scanned

performing repetitions of four tasks: biofeedback relaxation, relaxation without biofeedback

and two corresponding control conditions in which the subjects were instructed not to

relax. They observed activity relating to the voluntary intent to relax in the left anterior

cingulate, globus pallidus and parietal cortex. Activation of the anterior cingulate and

cerebellar vermis was specifically associated with the influence of biofeedback on intentional

relaxation. Right medial temporal lobe activity, adjacent to the amygdala was related to

the recorded rate of sympathetic relaxation across all tasks. According to the authors

these functional neuroanatomical findings suggest differential regional contributions to the

control of bodily states of sympathetic arousal.



3

EEG measurement

Generally, encephalographic measurements employ a system consisting of

- electrodes with conductive media,

- amplifiers with filters,

- A/D converter,

- recording device.

Electrodes read the signal from the head surface; amplifiers bring the micro volt signals

into the range where they can be digitalized accurately, converter changes signals from

analog to digital form, and personal computer (or other relevant device) stores and displays

obtained data. A set of the equipment is shown in Fig. 3.1.

Scalp recordings of neuronal activity in the brain, identified as the EEG, allow mea-

surement of potential changes over time in basic electric circuit conducting between signal

(active) electrode and reference electrode (Kondraske, 1986). Extra third electrode, called

ground electrode, is needed for getting differential voltage by subtracting the same voltages

showing at active and reference point. Minimal configuration for mono-channel EEG mea-

surement consists of one active electrode, one (or two specially linked together) reference

and one ground electrode. The multi-channel configurations for QEEG may comprise up

to 128 or 256 active electrodes.

13
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Figure 3.1: Equipment for EEG recording: amplifier unit, electrode cap, conductive jelly,

injection, and aid for disinfection.

3.1 Recording electrodes

The EEG recording electrodes and their proper function are critical for acquiring ap-

propriately high quality data for interpretation. Many types of electrodes exist, often with

different characteristics. Basically there are following types of electrodes:

- disposable (gel-less, and pre-gelled types)

- reusable disc electrodes (gold, silver, stainless steel or tin)

- headbands and electrode caps

- saline-based electrodes

- needle electrodes

For multi-channel montages, electrode caps are preferred, with number of electrodes

installed on its surface (Fig. 3.2). Commonly used scalp electrodes consist of Ag-AgCl

disks, 1 to 3 mm in diameter, with long flexible leads that can be plugged into an amplifier

(Bronzino, 1995). AgCl electrodes can accurately record also very slow changes in potential

(Picton et al., 2000). Needle electrodes are used for long recordings and are invasively

inserted under the scalp.
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Figure 3.2: Electro cap with electrodes implanted according 10-20 electrode placement

system.

Skin preparation differs, generally cleaning of the skin surface from oil and brushing

from dried parts is recommended. With disposable and disc electrodes, abrasive paste is

used for slight skin abrasion. With cap systems, abutting needle at the end of injection

is used for skin scraping, which can cause irritation, pain and infection. Especially when

person’s EEG is measured repeatedly and cap is mounted for the same electrode points,

there is a threat of certain pain and bleeding. That is why the right hygiene and safety

protocol should be kept.

Using the silver-silver chloride electrodes, the space between the electrode and skin

should be filled with conductive paste also helping to stick. With the cap systems, there is

a small hole for injection of conductive jelly. Conductive paste and conductive jelly serve

as media to ensure lowering of contact impedance at electrode-skin interface.

In 1958, International Federation in Electroencephalography and Clinical Neurophys-

iology adopted standardization for electrode placement called 10-20 electrode placement

system (Jasper, 1958). This system standardized physical placement and designations of

electrodes on the scalp. The head is divided into proportional distances from prominent

skull landmarks (nasion, preauricular points, inion) to provide adequate coverage of all

regions of the brain. Label 10-20 designates proportional distance in percents between

ears and nose where points for electrodes are chosen. Electrode placements are labeled
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according adjacent brain areas: F (frontal), C (central), T (temporal), P (posterior), and

O (occipital). The letters are accompanied by odd numbers at the left side of the head

and with even numbers on the right side (Fig. 3.3). Left and right side is considered by

convention from point of view of a subject.

Figure 3.3: Point labels for 10-20 electrode placement system.

As it is known from tomography different brain areas may be related to different func-

tions of the brain. Each scalp electrode is located near certain brain centres, e.g. F7 is

located near centres for rational activities, Fz near intentional and motivational centres,

F8 close to sources of emotional impulses. Cortex around C3, C4, and Cz locations deals

with sensory and motor functions. Locations near P3, P4, and Pz contribute to activity of

perception and differentiation. Near T3 and T4 emotional processors are located, while at

T5, T6 certain memory functions stand. Primary visual areas can be found bellow points

O1 and O2. However the scalp electrodes may not reflect the particular areas of cortex,

as the exact location of the active sources is still open problem due to limitations caused

by the non-homogeneous properties of the skull, different orientation of the cortex sources,

coherences between the sources, etc (Nunez, 1995).

High impedance can lead to distortions that can be difficult to separate from actual

signal. It may allow inducing outside electric frequencies on the wires used or on the

body. Impedance monitors are built in some commercially available EEG devices. In

order to prevent signal distortions impedances at each electrode contact with the scalp
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should all be bellow 5 KΩ, and balanced within 1 KΩ of each other. Similar standard

is required for clinical use of the EEG and for publication in most reputable journals.

Practically, impedance of the whole circuit comprising two electrodes is measured, but

built in impedance checks usually display results already divided by two. Control of all

impedances is desirable also after finishing every single measurement.

Several different recording reference electrode placements are mentioned in the lit-

erature. Physical references can be chosen as vertex (Cz), linked-ears, linked-mastoids,

ipsilateral-ear, contralateral-ear, C7 reference, bipolar references, and tip of the nose.

Reference-free techniques are represented by common average reference, weighted aver-

age reference, and source derivation. Each technique has its own set of advantages and

disadvantages. The choice of reference may produce topological distortion if relatively

electrically neutral area is not employed. Linking reference electrodes from two earlobes

or mastoids reduces the likelihood of artificially inflating activity in one hemisphere. Nev-

ertheless, the use of this method may drift away ”effective” reference from the midline

plane if the electrical resistance at each electrode differs (Kaiser, 1994). Cz reference is

advantageous when it is located in the middle of active electrodes, however for close points

it makes poor resolution. Reference-free techniques do not suffer from problems associated

with an actual physical reference. Nevertheless referencing to linked ears and vertex (Cz)

are predominant.

With modern instrumentation, the choice of a ground electrode plays no significant role

in the measurement (Effects of Electrode Placement, 2004). Forehead (Fpz) or ear location

is preferred (Collura, 1998), but sometimes wrist or leg is also used. The combination of

all active electrodes with reference and ground electrode compose channels. An overall

electrode configuration is called montage.

3.2 Amplifiers and filters

The signals need to be amplified to make them compatible with devices such as displays,

recorders, or A/D converters. Amplifiers adequate to measure these signals have to satisfy

very specific requirements. The basic requirements that a biopotential amplifier has to

satisfy are (Nagel, 1995):

- The physiological process to be monitored should not be influenced in any way by

the amplifier.

- The measured signal should not be distorted.



3. EEG MEASUREMENT 18

- The amplifier should provide the best possible separation of signal and interferences.

- The amplifier has to offer protection of the patient from any hazard of electric shock.

- The amplifier itself has to be protected against damages that might result from high

input voltages as they occur during the application of defibrillators or

electrosurgical instrumentation.

The input signal to the amplifier consists of five components:

The desired biopotential, undesired biopotentials, a power line interference signal of

50/60 Hz and its harmonics, interference signals generated by the tissue/electrode interface,

and noise. Proper design of the amplifier provides rejection of a large portion of the signal

interferences. The desired biopotential appears as the differential signal between the two

input terminals of the differential amplifier (Nagel, 1995).

The amplifier gain is the ratio of the output signal to the input signal. In order to

provide optimum signal quality and adequate voltage level for further signal processing,

the amplifier has to provide a gain of 100-100,000 (Nagel, 1995) (the highest need not to be

the best, combination of more parameters is involved, e.g. the range of the A/D converter,

sampling rate, noise of the used elements) and needs to maintain the best possible signal-

to-noise ratio. In order to decrease an impact of electrically noisy environment differential

amplifiers must have high common-mode rejection ratios (at least 100 dB) and high input

impedance (at least 100 MΩ). The common-mode rejection ratio is the ratio of the gain of

differential mode (wanted signal) over the gain of the common mode (original input signal

between the inputs and ground).

Special electrically shielded rooms minimize the impact of urban electric background,

in particular 50/60 Hz alternating current line noise. For usual medical purposes, shielded

room is not necessary. For research purposes when maximal amount of information is

desired, shielded room is recommended. Under such conditions amplifiers run on batteries

and an optical cable leads to the PC standing outside from the shielded space. In addi-

tion to the optical cable, electrical/optical and optical/electrical converters are necessary.

Usually information of interest lies bellow this line noise and we can use low-pass filters

with cut-off bellow 50/60 Hz, or for keeping higher frequency bands a notch filter can be

applied, that is able to reduce only a narrow band around 50/60 Hz (but distorts phases).

When computers are used as recording devices, channels of analog signal are repeatedly

sampled at a fixed time interval (sampling interval), and each sample is converted into a

digital representation by an analog- to-digital (A/D) converter. The A/D converter is

interfaced to a computer system so that each sample can be saved in the computer’s
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memory. The resolution of the converter is determined by the smallest amplitude that can

be sampled. This is obtained by dividing the voltage range of the A/D converter by 2

raised to the power of the number of bits of the A/D converter (Bronzino, 1995). A/D

converter usually uses minimally 12 bits (discerning 4,096 value levels). Ability to resolve

0.5 µV is recommended (Brunet, Young et al., 2000). Sufficient sampling rate is required,

at least double of the highest frequency component of our interest.

Analog (hardware) filters have to be integrated in the amplification unit. A high-pass

filter is needed for reducing low frequencies coming from bioelectric flowing potentials

(breathing, etc.), that remain in the signal after subtracting voltages toward ground elec-

trode. Its cut-off frequency usually lies in the range of 0.1-0.7 Hz. To ensure that the signal

is band limited, a low-pass filter with a cut-off frequency equal to the highest frequency

of our interest (Bronzino, 1995) is used (usually in the range from 40 Hz up to less than

one half of the sampling rate). Analog low-pass filters prevent distortion of the signal by

interference effects with sampling rate, called aliasing, which would occur if frequencies

greater than one half of the sampling rate survive without diminishing.

Once data are stored, digital filtering can be used. The strength of the analog filters

is limited thus for displaying and processing of the signals further decreasing of DC com-

ponents is usually needed. It is possible to choose from linear (FIR, IIR) filtering or novel

non-linear filtering methods. The choice should be done according to the objectives put on

the signal processing. Predominantly finite impulse response (FIR) filters are used which

do not distort wave phases. The data points width typically range on the order of 1000

and one of the window function (Blackman, Hanning, Hamming, or rectangular) should be

chosen. Filters should be designed in a way to influence useful signal properties minimally.

Before performing the final measurements the whole EEG system should be tested.

Inter-channel calibrations with known wave signal parameters should not display significant

discrepancies. The output noise (referred to input) consists mainly from the noise caused

by the analog amplifier circuitry and by A/D converter circuitry. Noise value should

be consistent with manufacturer information, about 0.3-2 µV pp. (range from negative

peak to positive peak) but this value depends on the way of noise estimation and on the

system configuration (low-pass filter, sampling rate, choice of circuitry). The noise can be

determined by connecting the inputs of the amplifier together, or abased them into a salty

solution, or ”short-circuiting” the inputs, and then measuring the output of the amplifier.

The number of useful information bits can be counted as a power of two from the ratio of

average EEG signal amplitude over the noise amplitude (e.g. 50µV/1µV results in over 5

bits).
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One of the limitations of recordings is due to storage requirements. For example, 1

hour of eight channels 14-bit signal sampled with 500 Hz occupies 200 MB of the memory.

Portable recording systems were developed for used during longer monitoring of a subject

without limiting movement of a person. Some of the commercial EEG recording systems

comes from following suppliers: Lexicor, Electrical geodesics, Biosemi, NeuroScan, Sigma

Medizin, Contact Precision Instruments, Stellate, Thought Technology, Xltek.

Here follows the summarization of EEG measurement system components:

- Electrode cap with conductive jelly or Ag-AgCl disc electrodes with conductive paste.

- Amplifiers with overall amplification gain between 100-100,000, with input impedances

at least 100 MΩ, and common-mode rejection ratio at least 100 dB.

- Analog filters integrated in the unit with high pass filter with cut-off frequency in

the range of 0.1-0.7 Hz and low pass filter with cut-off frequency less than one

half of the sampling rate. In fact, frequencies above 50 Hz are rarely involved as

they contribute negligibly to power spectrum of EEG.

- At least 12 bit A/D converter with accuracy lower than overall noise (0.3-2 µV pp.),

and sampling frequency usually between 128 – 1024 Hz.

- Sufficiently quick PC for taking over data for recording and eventually for online

analysis, with adequate volume of hard disc.

- Digital high pass FIR filter with similar cut-off frequency as analog high pass.

The general quality of recording equipment depends on the right combination of the

mentioned parameters. Before further data processing, raw EEG signal should be checked

for artefacts.

3.3 Artefacts

Scanning for signal distortions belongs to basic evaluation of the EEG traces. Artefacts

are usually considered to be sequences with higher amplitude and different shape in com-

parison to signal sequences that doesn’t suffer by any large contamination. The artefact

in the recorded EEG may be either patient-related or technical. Patient-related artefacts

are unwanted physiological signals that may significantly disturb the EEG. Technical arte-

facts, such as AC power line noise, can be decreased by decreasing electrode impedance

and by shorter electrode wires. The most common EEG artefact sources can be classified

in following way:
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Patient related:

- any minor body movements

- EMG

- ECG (pulse, pace-maker)

- eye movements

- sweating

Technical: - 50/60 Hz

- impedance fluctuation

- cable movements

- broken wire contacts

- too much electrode paste/jelly or dried pieces

- low battery

Excluding the artefact segments from the EEG traces can be managed by the trained

experts or automatically. For better discrimination of different physiological artefacts,

additional electrodes for monitoring eye movement, ECG, and muscle activity may be

important.



4

Methods for EEG analysis

In this chapter we introduce some of the linear and nonlinear measures we used for EEG

signal analysis in chapter 5 and 6. At the beginning methods for analyzing single signals

are noted and then methods for quantification of association between pairs of signals are

described.

When using methods for biosignal analysis, attention should be kept on difficulties

necessarily joint to real biological signals. To obtain characteristics of real physiological

signal we face problems of contamination by noise, physiological and technical artefacts and

nonstationarity. Stationarity of the EEG signal is a model that is rarely satisfied, especially

when longer data segments are considered. For any computational method certain minimal

number of data points is needed. If the signal were stationary, longer sequences could be

taken with providing appropriate results. On the other hand if nonstationarity of the signal

was more significant, loss of ability to extract important features from time series would

be present.

Since many features of EEG signals can not be generated by linear models, it is generally

argued that nonlinear measures are likely to give more information than conventional linear

measures (Quiroga et al., 2002). A recently applied promising methodology of EEG signal

processing is based on the theory of nonlinear dynamical systems, information theory, chaos

theory and theory of stochastic processes.

4.1 Spectral measures

Well-established methodology to investigate the changes in EEG recordings is based on

the transformation of the EEG signal into the frequency domain where inspection of the

22
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waveforms belonging to different frequency bands is usually applied.

Linear spectral methods are based on using a spectral transformation such as Fourier

Transform. Discrete Fourier transform Hn (Press et al., 1988) from N consecutive sampled

values hk with sampling interval ∆ is given by

Hn =
N−1∑

k=0

hke
2πikn/N (4.1)

where n denotes frequency component belonging to frequency

fn =
n

N∆
(4.2)

and n runs from 0 to N-1. Practically Fast Fourier transform procedure is applied.

One can obtain power spectral density of the signal by taking the modulus-squared of the

discrete Fourier transform:

Pfn = |Hn|2 (4.3)

Total power spectrum is a sum of power components over the whole spectral interval;

0.5 - 45 Hz in our study. Frequency band power ratio and spectral edge frequency are

derived from this transform.

Frequency band powers

Frequency spectrum was divided into 9 bands: delta-1 (0.5-2 Hz), delta-2 (2-4 Hz),

theta-1

(4-6 Hz), theta-2 (6-8 Hz), alpha-1 (8-10 Hz), alpha-2 (10-12 Hz), beta-1 (12-16 Hz),

beta-2 (16-30 Hz), and gamma (30-45 Hz) and corresponding powers were computed.

Frequency band power ratio

Each power component is an estimate of a power in the frequency interval with width
1

N∆
. Usually one is interested in contribution of certain broader frequency interval to total

power spectra of the signal. This is quantified through frequency band power ratio of

certain frequency band:

PRf1,f2 =
f2∑

f1

Pfn (4.4)
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where fn is counted according to 4.2.

Spectral edge frequency

Another measure derived from the estimates of power is spectral edge frequency. It

points the frequency fe, bellow which certain percentage of the total power lies. Under

total power overall power between fmin and fmax is meant. For example for 95% portion

fe is given by

fe∑

fmin

Pfn = 0.95
fmax∑

fmin

Pfn (4.5)

4.2 Linear and nonlinear measures of complexity

For traditional EEG feature extraction signals are described in terms of frequency and

amplitude. But already after a first inspection of EEG signals the observer can notice

their ”complexity”. Some signals vary more than others. Some appear extremely random,

while others seem to demonstrate certain repetitive pattern. Signal variability or system

complexity has been correlated with physiological conditions. These features can be used

for comparison across different patient populations, because they are invariant, insensitive

to absolute measures such as amplitude and frequency.

The complexity in this context is generally understood to be regularity or predictability

of EEG patterns. The periodic repetition of patterns in EEG provides an indication of

contribution of deterministic nature of the system influencing the signal. Such systems are

considered to have lower complexity compared to systems generating fully random signal

which are understood to be highly complex (Rosipal, 2001). When the brain is in normal

alert state EEG reflects firing of millions of postsynaptic potentials coming from cortex

volume and firing asynchronously. The alert EEG pattern displays virtually no repetitive

patterns, no deterministic origin, so it is difficult to detect underlying states of the brain.

When the brain activity is diminished, the neuronal activity of the thalamus, that pro-

duces an oscillatory activity, synchronizes firing of neo-cortical neurons, coinciding with a

decrease in the overall excitability of neo-cortical neurons. This leads to the EEG trace

showing more regular behavior with dominant frequencies significantly shifted to lower
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frequency activities. Irregular, minimally predictable patterns in the EEG are associated

with a system of high complexity while regular, more predictable traces of EEG are consid-

ered to be less complex. This suggests that measures reflecting changes in regularity and

predictability of EEG patterns associated with the transition between different brain states

may serve as valuable indicators for these brain changes. Nonlinear complexity measures

detect the degree of variability in the EEG signal concentrating on the dynamics of the

process.

Complexity measures related to the concept of entropy rates estimation were reported to

be useful for determining depth of anaesthesia (Rosipal, 2001). The findings indicate that

these measures may be as good or better indicators of depth of anaesthesia in comparison

to the existing, mainly spectrally based techniques. Results from work of Kobayashi et al.

(2000) showed successful discrimination of sleep stages by measure of correlation dimen-

sion. Recognition power of the mentioned methods is dependant on sufficiently expressive

changes in EEG pattern. The question is whether these methods may display any useful

changes in connection with less striking physiological changes, e.g. during sensorimotorical

and mental rest.

Spectral entropy

Spectral entropy is a stochastic complexity measure based on spectral domain. Nor-

malized distribution of power over frequency with respect to the total power spectrum will

yield a probability density function (PDF). According to application of Shannon’s channel

entropy an estimate of the spectral entropy can be counted:

H = −∑

f

pf ln(pf ) (4.6)

where pf is PDF value at frequency f.

The entropy has been interpreted as a measure of uncertainty or system complexity.

High uncertainty is due to a large number of processes (e.g. random noise) while low

uncertainty is due to a small number of dominating processes (e.g. regular motions) (Rezek

and Roberts, 1998). For example randomly distributed noise has high entropy values, while

regular motion, such as sinusoids, gives low entropy values.

Histogram-based entropy

Histogram-based entropy estimators are related to Shannon entropy concept that de-
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termines the degree of uncertainty or the rate of information acquisition from the given

time series. Histogram is constructed from time series values and estimate is calculated as

Hhb = −∑

i

ni ln(ni) (4.7)

where the summation runs through all bins and ni is the histogram value of i-th bin.

We used this formula for calculation of Shannon entropy and another estimation using

further modifications (Moddemeijer, 1989) termed here histogram-based entropy. For the

latter, EEG data normalized by their standard deviation were employed whereas for the

former, data without normalization were used. The number of bins was set to be equal to

the square root of the number of data points.

Correlation dimension

Theory of chaotic systems gave rise to the question whether it is possible to distinguish

between fully random processes and processes with deterministic origin but showing high

levels of irregularity. Problems with application of methods from chaotic systems are

connected with nonstationarity of the EEG, relatively high noise component and other

factors. Advantages of new nonlinear methods based on the theory of dynamical systems

were shown on known dynamical systems (Lorenz, Henon system, etc.). In spite of the

fact, that nonlinearity of majority of biological signals have not been proved (Paluš et al.,

1999; Paluš, 1996), nonlinear measures may permit the extraction of characteristics of the

EEG signal that quantitatively appeared to distinguish between different brain states.

Some methods of non-linear dynamics are based on Taken’s embedding theorem for

noiseless systems (Takens, 1981). Phase space reconstruction of the whole system from a

single variable xn can be obtained. According to the embedding theory, under some condi-

tions, the state portrait, topologically equivalent to the original one, can be reconstructed

from the signal. A set of delay coordinates is a convenient choice for the reconstruction.

State of the system is defined by a point Xn = (xn−m+1, ..., xn) with embedding dimension

m. With assumption that the attractor of the system is a differentiable manifold of dimen-

sion D, the embedding with m ≥ 2D + 1 saves a lot of important properties of the original

attractor. In this context complexity of the system is often estimated by the correlation

dimension (CD). Correlation dimension of an attractor may be estimated by Grassberger -

Procaccia algorithm (Grassberger and Procaccia, 1983). CD may indicate chaos or identify

low-dimensional determinism. The geometrical character of the attractor may provide an

important information about the system. Correlation dimension is defined as
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D2 = lim
ε→0

ln
∑N(ε)

i=1 p2
i

ln ε
= lim

ε→0

ln C2(ε)

ln ε
(4.8)

C2 =
∑N(ε)

i=1 p2
i is the probability that a hyper cube with a size ε contains two points

of the attractor. It is approximately equal to the probability that the distance between

two points of the attractor is less then ε. Attractor can be reconstructed by embedding

technique. Series of embedded vectors are constructed which elements are m samples taken

at intervals of τ samples, i.e. xm(i) = (xi, xi+τ , ..., xi+(m−1)τ ). Correlation sum C2 may be

estimated as

C2(ε) =
2

N(N − 1)

N∑

i

N∑

j>i

Θ(ε− ‖xm(i)− xm(j)‖) (4.9)

In 4.9 N denotes number of data points, xm(i) embedded vectors comprising subsequent

data points of a time series, Θ denotes Heaviside function defined in the previous section,

and ||.|| represents usually maximum norm in a phase space of embedded vectors. The

embedding dimension m determines the size of the segment which is used to form the

embedding vectors and thus the length if the patterns that can be modeled. In order to

find correlation dimension from 4.8 we have to plot ln C2(ε) as a function of ln ε and follow

the slope of the obtained curve. Expression

ν(ε) =
d ln C2(ε)

d ln ε
(4.10)

is called correlation exponent, and the limit of ν(ε) for vanishing ε represents the cor-

relation dimension.

Reliable estimation of the CD requires sufficient amount of data points. Compromise

has to be made between the requirements for a sufficiently long EEG window and sta-

tionarity. For stacionarity EEG window of tens of seconds in duration can be regarded as

quasi-stationary, depending on subject’s behavioral state (da Silva, 1987).

4.3 Linear and nonlinear interdependency measures

In the study of electroencephalographic signals synchronization phenomena have been

increasingly recognized as a key feature for establishing the communication between differ-
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ent regions of the brain (Gray et al., 1989). Synchrony is used to denote relations between

items of information processed by different locations. Highly synchronized EEG means a

high similarity in the wave shape occurring within a given point or period in time. The

basic idea is that the similarity of the signal also means similarity in functioning. Interde-

pendence can be evaluated by different measures possessing linear or nonlinear character.

Arguments for using non-linear interdependencies based on chaotic toy models were de-

scribed in (Quiroga et al., 2000). Quiroga et al. (2002) reasoned that in EEG analysis

nonlinear synchronization measures might surpass traditional linear methods such as the

cross correlation or the coherence function. Non-linear interdependencies (e.g., mutual

information) have the ability of being sensitive to every kind of interaction, either linear

or non-linear.

For investigation of the cooperation between hemispheres, we estimated linear cor-

relation of paired signals from left and right hemispheres by linear correlation coefficient

(Pearson’s correlation) and with respect to restriction to certain frequency bands by coher-

ence. As a nonlinear measure with broader scope for evaluating interdependency, mutual

information was estimated.

Linear correlation coefficient

For evaluating association between two finite time series X = {Xi}N
i=1 and Y = {Yi}N

i=1

linear correlation coefficient is most widely used:

r =

∑
i(Xi − X̄)(Yi − Ȳ )

[
∑

i(Xi − X̄)2
∑

i(Yi − Ȳ )2]1/2
(4.11)

where X̄ and Ȳ are means of time series X and Y respectively. The value of r lies

between -1 and 1, inclusive. It takes on a value of 1, termed ”complete positive correlation”,

when the data points lie on a perfect straight line with positive slope and a value of -1,

termed ”complete negative correlation” with the negative slope. A value of r near zero

indicates that time series X and Y are uncorrelated.

Coherence

EEG coherence estimates the degree of synchrony between the activity of two brain

regions, however, the exact relationship of coherence to cortical activity is not known

(Reiterer, 2002). Coherence may be used for measuring of level of synchronization in the

functioning of the hemispheres. Time series X and Y are divided into M consecutive time
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windows indexed by j. Then one has to compute spectral powers of chosen frequency band

f (between fmin and fmax) in order to obtain new time series PX(f) = {PX
j (f)}M

j=1 and

P Y (f) = {P Y
j (f)}M

j=1. Coherence between two series X and Y is defined as a square from

linear correlation of cumulative power spectra:

KXY (f) =

[
cov(PX(f), P Y (f))

[var(PX(f))var(P Y (f))]1/2

]2

(4.12)

where in the numerator stands covariance

cov(PX(f), P Y (f)) = 1/M
M∑

j

[PX
j (f)− P̄X(f)][P Y

j (f)− P̄ Y (f)] (4.13)

and in the denominator variances expresed as

var(PX(f)) = 1/M
M∑

j

[PX
j (f)− P̄X(f)]2 (4.14)

for PX , where P̄X(f) denotes mean of PX(f), and for P Y alike. Value of coherence

ranges from ”0” to ”1”. Coherence ”1” means that the corresponding frequency compo-

nents of both signals are identical and only amplitude and constant phase delay may exist.

Coherence ”0” means that the corresponding frequency components of both signals are not

correlated (Rappelsberger, 2000).

Mutual information

The concept of mutual information was firstly established in the field of communications

theory (Shannon and Weaver, 1949). It have been adopted to EEG analysis (Callaway

and Harris, 1974) for evaluating certain nonlinear ”correlation” between two time series.

Mutual information measures the amount of information shared between two time series

(Gel’Fand and Yaglom, 1959). For series X and Y it can be counted as

MI(X, Y ) =
∑

Xm,Yn

PXY (Xm, Yn)log2

[
PXY (Xm, Yn)

PX(Xm)PY (Yn)

]
(4.15)

where PX(Xm) denotes value of the normalized histogram of the distribution of observed

values Xm (all data values included in bin indexed by m) in the first time series X, the

same for PY (Yn), and PXY (Xm, Yn) is the joint distribution of both series (Abarbanel
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et al., 1996). For independent time series X and Y is MI(X,Y)=0 and otherwise it will

take positive values with a maximum for identical signals.

4.4 Development of modified and new measures

After evaluating performance of a number of EEG measures, it was a natural task to

use our experiences for improvement, modification and development of new measures that

could be more effective or more ”sensitive” to changes in EEG. Within this sense three

measures follow, from which the last one is our original product.

Spectral edge

From analysis of power band results we considered the fact, that spectral edge at 95

percents of total power need not be the most optimal parameter for spectral edge regarding

its ability to capture EEG changes in our experiment. 95% portion was used by Rosipal

(2001) as suitable for monitoring physiology of anaesthesia. From analyzes of our long-term

AVS EEG data we tried to estimate two other optimal values. Spectral edge is connected to

relative band powers. According to significant trends of relative powers covering frequency

intervals from delta-1 to alpha-1 and from delta-1 to alpha-2 ranges we chose 61 and 78 %

respectively, as these were average values of power contributions in these merged bands.

These values are estimates where spectral edge could provide steepest trends, i.e. higher

sensitivities for long-term AVS effects.

Spectral decay

Examination of spectral properties may lead to indication wheather data are of de-

terministic or stochastic nature. Whereas in chaotic systems the power spectrum falls

exponentially at high frequencies, in stochastic systems the power spectrum decays via a

power law (Sigeti, 1995):

P (f) ∼ 1/fα (4.16)

with f being a frequency. Different types of noise are recognized according to their

behavior in frequency spectrum. As an example, white noise with α = 0 or random walk

time series with power spectrum that decreases as 1/f 2 can be mentioned. Parameter α is

called spectral decay, fractal exponent, or power-law exponent.
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Figure 4.1: Example of EEG power fitted by power-law function. Upper picture: lin-lin

view of EEG power, lower picture: log-log view where power fit becomes linear. From

3-minute EEG data from a single session.

Spectral decay is usually not employed in EEG studies. From Fig. 4.1 it can be seen

that EEG spectrum may by interpolated by power-law function: On the upper graph a

sample of spectral power density in double linear scale is presented, while on the lower

graph the same situation in double logarithmic scale is shown. Parameter α is taken as

value of spectral decay measure. α is computed as a slope of linear fit of the power spectrum

density in the double logarithmic scale.
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For our purposes spectral decay may be regarded as one of linear (meant spectrally

based) measures of complexity. Lower values of spectral decay reflect higher appearance

of higher frequencies. Such signals are considered to be less regular or more complex.

Frequency interval 5-250 Hz was taken for determination of α.

Relative length

EEG signal comprises different frequency components oscillating with different ampli-

tudes. The length of the EEG curve reflects appearance of different frequency components

to the whole spectrum, reaching higher values in a case when higher frequencies are more

contributed.

This was an inspiration for development of a measure that reflects related facts and

possesses no other free parameter that should be optimized (e.g. as for spectral edge

frequency).

Instead of length of EEG curve it is sufficient to count absolute values of increments in

signal amplitude. Thus we define relative length as a sum of amplitude changes between 2

successive data points normed by overall signal standard deviation and by length of time

window (no. of data points):

RL =

∑N−1
i=1 |Xi+1 −Xi|

(N − 1)SD(X)
(4.17)

It should be invariant to signal length, so EEG interval of different length may be

compared.

Correction due to different sampling frequency (sr) can be easily made with multipli-

cation by srorig/srnew, with srnew being a new and srorig an original frequency. Different

reaction to sampling frequency change is expected only if undersampled with loss of im-

portant frequency ranges, or when signal to noise ratio is too small. Assuming that EEG

signal is well pre-processed, with average value near zero, it is also invariant to multipli-

cation of EEG signal by a constant. With division by overall signal standard deviation

relative length is not sensitive to absolute powers but rather to relative powers (4.1).

Relative length is a newly proposed measure evaluating certain kind of complexity of

EEG signals. Higher relative length points to higher signal complexity due to increased

contribution of higher frequencies. Similarity of relative length measure with tension of

the curve used in image processing can be mentioned. Tension is characterized by the first

derivatives, in discrete situation it is proportional to
∑

i |Xi −Xi−1|2.
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Calculation of fractal dimension by Higuchi algorithm (Accardo et al., 1997) is also

based on summation of differences of two succesive data points. We compared perfor-

mance of Higuchi measure with measure of relative length on extensive sleep EEG data.

Considerable correlation coefficient (0.83) was found. However, in comparison to all other

measures, the advantage of the measure proposed here is much shorter computation time

due to its simple formula.

4.5 Subjective assessment

Volunteer’s subjective perception of the training process was monitored to set objec-

tive changes into the frame of the subjects’ experience. Before each day procedure subjects

evaluated their general well-being by answering a question ”How do you currently feel?”.

After 3-min relaxation prior to AVS session subjects evaluated their general release accom-

plished during the relaxation (appendix A, Fig. 8.2). The task was formulated as ”Assess

a level of your relief accomplished during the prestimulation period.”. Both measures were

rated on 7-point bipolar scale. Although subjects might interpret these questions slightly

differently, relative movements on the scale are supposed to indicate changes of subjects’

states. At the beginning and at the end of the whole experiment participants rated their

skills regarding ability to relax and expressed their attitude towards effectiveness of AVS

machines (appendix A, Fig. 8.1 and 8.3). Specifically, whether they think AVS training

may improve person’s relaxation abilities.

4.6 Statistical methods

Statistical methods used in Part A (Audiovisual stimulation of the brain):

Evolution of examined measures was tested for obtaining trends in direct AVS effects

(section 5.2), trends in transient effects (section 5.3), and for long-term AVS effects (sec-

tion 5.4). Evolutions of test group averages during the course of the AVS training were

calculated for each followed measure. For these 25-data-point time series linear regression

model Y = a+bX +e was derived, where X is the explanatory variable, Y is the dependent

variable, slope of the line is b, a is the intercept, and e is residual - a random variable with

zero mean. Its significance was tested by an ANOVA F-test (Anděl, 1985). The signifi-

cance criterion was p ≤ 0.05 (testing for H0: b = 0 against H1: b 6= 0). For consistency at

a personal level, we have added another criterion for considering any trend as significant:

Maximally one of the subjects could have opposite trend compared to significant group-
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average trend. For significant trends distribution of residuals from regression model was

checked by Shapiro-Wilk test for normality.

For long-term AVS effects, between-group comparison was implemented again by linear

regression F-test, here testing for slopes, H0 : bAV S = bcontrol against H1 : bAV S 6= bcontrol,

with treshold p ≤ 0.05. Trend of control group was considered as significant again only

when curve of average measure had significantly different slope from the flat one plus both

subjects from control group had their trends in the same direction (increase or decrease).

For exploring of the transient AVS effects (section 5.3) data recorded after AVS were

compared to those recorded before AVS. Differences in individual measures during post

stimulation period in respect to prestimulation period were examined by Wilcoxon matched-

paired test (Anděl, 1985). In each group there were 25 values obtained as inter-person

averages with the respect to the number of the session. For significant change at personal

level Wilcoxon test appeared to be too strong critetion, thus we used as a treshold for sig-

nificancy the following weaker criterion: Majority of increases or decreases from 25 pairs

of values had to correlate with the group direction (increase or decrease).

Statistical methods used in Part B (EEG characteristics during relaxation):

More criteria were used to determine the strongest trends during 3-minute periods

(section 6.2). One of them was again F-test of linear regression. The new one, residual

relative change, is introduced in section 6.1.

Then we needed to distinguish two relaxation classes by appropriate EEG features

(section 6.3). Parametric and nonparametric tests were utilized. The first of them was

two-sample student’s t-test, testing for equality of means with assumption of unequal

variances (heteroscedastic t-test) (Anděl, 1985). By t-test we determined whether two

sample means are equal, within requirements of normally distributed data. As only part

of our data held this condition, for the rest of data we used nonparametric Kruskall-Wallis

test for data violating normality (Anděl, 1985). It is able to distinguish any data on the

basis of rank order, but for normally distributed data t-test is more suitable as it is stronger

than Kruskall-Wallis test.

Finally, our goal was to classify EEG features into two groups formed according to sub-

jective assessment of relaxation (section 6.4). Fisher discriminant analysis was employed as

one of the methods within feature selection procedures. Further description can be found

in section 6.1.
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Audio-visual stimulation of the brain

(Part A)

Throughout history, several studies were interested in the effect of external stimulation

on the cortical EEG, predominantly in photic driving response (response to visual stimula-

tion) (Adrian and Matthews, 1934; Walter and Walter, 1949; Townsend et al., 1975; Pigeau

and Frame, 1992). Interest in using visual and auditory rhythmic stimulation as a means of

inducing relaxation and hypnosis was raised in the middle of the last century (Morse, 1993).

More recently devices using light and sound at specified frequencies were used to ”drive”

the EEG towards certain frequencies. In the last decades audio-visual stimulation has

been reported as an effective method for relieving dental anxiety (Morse, 1993), to induce

hypnagogic states (Dieter and Weinstein, 1995) helping to relieve tension and migraine

headaches (Solomon, 1985; Anderson, 1989), and for therapeutic effect on premenstrual

syndrome (Anderson et al., 1997). AVS was reported to improve behavioral and cognitive

functions of learning disabled boys (Carter and Russell, 1993), may alleviate the cognitive

dysfunctions in connection with closed head injury (Montgomery et al., 1994), and dam-

ages from aneurysms and strokes (Russell, 1997). Photic driving response was proven to be

useful for investigation of neurological disorders, such as Alzheimer disease, schizophrenia,

and depression.

AVS is a simple method to influence the brain from sensory channels. AVS primarily

activates brain centers for sound and visual processing. From all sensory channels the

visual channel is predominantly used by humans. Primary visual cortex serves as sensory

area for visual input. It is situated mostly on the medial wall of the hemispheres at the

occipital pole (area V1, Fig. 5.1), covering both sides of the calcarine sulcus. Visual

analysis proceeds along many paths in parallel. It is treated in the visual association

35
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cortex located around the occipital poles (area V1 and V2). Form analysis continues in

several other zones (including V3) and the highest level of cortical form discrimination,

e.g. responding to complex generic forms such as faces, is located in the inferior temporal

lobe (Atwood and MacKay, 1989b). Thus brain activity connected with visual processing

can be measured from the adjacent scalp locations O1,O2, and T3,T5,T4,T6 (Fig. 5.4).

Figure 5.1: Localization and areas of the Primary (V1) and Secondary visual cortex.

Regions of auditory cortex located in the superior temporal lobe, are responsible for

recognition of sound patterns, allowing interpretation of environmental sounds and of

speech. From the inferior colliculus auditory signals run to the medial geniculate nucleus

(part of thalamus). Tonotopic organization of the colliculus is retained there. Further one

part of the medial geniculate nucleus, laminated ventral division, projects to the primary

auditory cortex while other division projects to surrounding association areas. The pri-

mary auditory cortex is a small area deep within the lateral sulcus. It is divided into a

series of isofrequency strips. The auditory association cortex is located behind the primary

cortex and it functions as processor of complex sounds with combination sensitive neurons

(Atwood and MacKay, 1989b).

Brain electrical activity resulting from sensory stimulation is referred to as an evoked

potential (EP) or event-related potential (ERP). ERP are usually modeled as signals su-

perimposed, without interaction, on background of ongoing EEG. A rapid change in a

sensory stimulus evokes a transient evoked potential. If this stimulus occurs repetitively

at a rate high enough to prevent the EPR from returning to a baseline state, the elicited



5. AUDIO-VISUAL STIMULATION OF THE BRAIN (PART A) 37

response is called a steady-state evoked potential (SSEP)(Regan, 1989). A distinctive fea-

ture of the visual steady-state evoked potential (SSVEP) is that it comprises sinusoidal

components at stimulus frequency and its harmonics. The latency of the response with

the SSVEP, elicited by an unstructed flicker (low spatial frequency) in the range 7 to 15

Hz is approximately 200 to 275 milliseconds. In this case the signal comprises a frequency

spectrum with several peaks, while stimulus in the form of an alternating checkerboard

(high spatial frequency) consists of only one frequency maximum.

The mechanism organizing the rhythmicity of spontaneous EEG activity is still not

clear. There are assumptions, that the cortex is able to synchronize its own neuronal

activity because of its intracortical wiring connections through inhibitory interneurons

(Weiss, 1994). On the other hand subcortical generators or pacemakers, like the thalamus

or ascending reticular activating system (Birbaumer and Schmidt, 1999), may interplay

with cortical ”pacemakers” and together bring rhythmicity into existence.

In the situation with SSEP one may observe under certain conditions, in addition

to mechanisms mentioned above, adaptation of the brain waves to external stimuli. The

simplest expectation may be that EEG components caused by repetitive stimulation would

be superimposed to a spontaneous EEG pattern. But typical ERP amplitude is about

2 µV, while typical amplitude of spontaneous ongoing EEG is about 25 µV (in alpha

regime). One may assume that there isn’t present just a simple additional effect but that

mechanisms governing neuronal activity are sensitive enough to be entrained by repetitive

low amplitude ERPs. Under ”entrainment” of the brain waves this kind of resonant effect

is understood. As the ensembles of neurons are able to synchronize their activity without

external stimulus, small repetitive input may after a certain adaptation period synchronize

their firing thresholds.

At least two parallel and complementary visual processing pathways exist, the so called

P and M systems beginning with P and M retinal ganglion cells. Each of them is efficient

for different scope of contrast and changes in luminescence. Low-frequency SSVEP are

more likely to provide information about general mechanism directing both, driven and

spontaneous rhythmic activity. The topography of the low-frequency SSVEP is generally

characterized by amplitude maximum in occipitoparietal region. The phase topography

of many subjects has shown one or more sharp 180 degree phase discontinuities between

neighbouring measurement points. Several models have proposed explanation for these

effects. Nunez brought attention to the possibility of travelling and standing waves medi-

ated by rapidly conducting long corticocortico fibers. This model suggests that a sinusoidal

drive may permit standing or travelling waves, depending on the specific features of cortical

neuroanatomy and damping. Structured sinusoidal visual stimulus, with its more restricted
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projection to the striate cortex, is more likely to yield travelling waves. In contrast, an

unstructed sinusoidal stimulus, with its more extensive cortical projections is more likely

to allow interference and thus standing waves (Nunez, 1995).

Salansky et al. (1998) studied entrainment due to visual stimulation in the range of

1-20 Hz with frequency increment 0.4 Hz. They found resonance activation only for 20% of

stimulation frequency values. Several studies have suggested that photic driving response

has a more diffuse character on cortical EEG, not only in the occipital regions. In visual

stimulation experiments conducted by Rosenfeld one group of subjects did not produce a

photic driving response within the alpha band while low-baseline alpha participants showed

transient AVS effects (Rosenfeld et al., 1997). Timmermann found that the overall effects

of AVS in the alpha range on the cortical EEG did not have a significant effect on the

corresponding alpha activity of the cortex (Timmermann et al., 1999). Preservation of

alpha rhythm shortly after photic driving was reported by Sakamoto et al. (1993).

AVS examined by Jin et al. had decreasing effects on EEG complexity, shown by the

first positive Lyapunov exponent as a nonlinear measure of complexity (Jin et al., 2002).

Brauchli and co. used rhythmic audio-visual stimulation programs with different inten-

sity of stimuli. They investigated how varying sensory input can affect mood, autonomic

arousal, and electrocortical activity. Contribution of the alpha band decreased similarly

during all their stimulation programs. Programs affected mood and autonomic variables

differently, but not electrocortical variables. They interpreted the higher activation of the

right hemisphere during all programs as an indication that audio-visual stimulation does

induce changes in the brain, such as are commonly found in altered states of consciousness

(Brauchli et al., 1995).

AVS may serve as a useful tool for possible clinical applications of neurofeedback ther-

apy, serving as an adjunct method for priming desired cortical frequencies. Basically there

are two ways how to try to attain brain pattern with desired features (e.g. increase of cer-

tain frequency band). One way is passive training with AVS. The second way is to observe

ongoing EEG pattern and their characteristics and behaving according to them, called

EEG biofeedback. One of the questions still remaining is whether AVS, EEG biofeedback

training alone, or a combination of both AVS and EEG biofeedback is more effective to

entrain EEG rhythms.
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5.1 Materials

Subjects

Six right-handed healthy subjects (2 females and 4 males) volunteered for the audio-

visual stimulation (AVS) training. Participants ranged in age from 24 to 39 years, with

a mean of 25.5 years, s.d. 5.1 yrs., and 2 subjects (1 female and 1 male, aged 24 and 39

years) created the control group. They did not have any known neurological deficit and

were not taking any drugs known to affect the EEG. The participants gave their written

informed consent prior to their inclusion in the experiment.

Audio-visual stimulation

Overall training of each subject from the test group consisted of 25 AVS program

sessions, each of 20-minute length. Each person attended only one session per working

day. Due to weekends or other exceptional events, separation between stimulations could

be prolonged to several days. During the session subject was lying in a darkened, electrically

shielded room. AVS was provided by commercially available Voyager XL light and sound

synthesizer. The device consisted of headphones and glasses with red light-emitting diodes

connected to a portable unit providing various programs for AVS stimulation. We chose a

program described as suitable for AVS beginners to make acquaintance with different ”mind

states” according to their frequency profile performed. This AVS program stimulated the

brain at following frequencies (Fig. 5.2): 17 Hz during the first 3 minutes, then fast

decrease to 10 Hz and slower decrease to 8 Hz during min. 4-8, again fast decrease to 5

Hz during min. 8-9, slower decrease to 4 Hz during min. 9-10, steady 4 Hz during next

3 minutes followed by decrease to 2 Hz during min. 13, steady 2 Hz during min. 14-17,

and then stepwise return through 5,9 to 15 Hz at min. 17-20. Sound beats of a particular

frequency were produced from 3 sine-wave pulses with close frequencies around 280 Hz.

Visual stimulation was provided by rectangular red light pulses with a number of switches

determining the stimulation frequency. This series was chosen to introduce a sequence of

beta, alpha, theta, and delta frequency ranges to participants.

EEG recording

As we were interested in the changes in resting EEG, data from 3-minute period were

recorded prior to each AVS training. Subjects were instructed to keep their eyes closed
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Figure 5.2: Scheme of frequency characteristics of stimulation procedure during one AVS

session.

and relax both physically and mentally. After initial EEG recording, headphones and

glasses were placed over the electrode cap and the participants were instructed to stay

released and to follow the AVS (Fig. 5.3). Participants themselves adjusted brightness

and loudness at the beginning of each AVS session to avoid their discomfort from too

intense stimulation but yet to maintain stimulation to be effective enough. Subjects were

provided with AVS for 20 min, with simultaneous EEG recording. After the stimulation,

a post-session EEG during relaxed wakefulness with closed eyes was recorded for another

3 min. In the control group, volunteers took part in the same measurement procedure

but instead of AVS they listened to relaxation music. The lying position during the EEG

measurements was comfortable enough to avoid unwanted activities and to diminish the

occurrence of some artifacts caused by feeble motion. On the other hand, the subjects

sometimes fell asleep as the room was designed to be darkened and noiseless.

Unipolar EEG montage comprised eight channels with electrodes placed on F3, F4,

C3, C4, P3, P4, O1, O2 locations according the International 10-20 system. The reference

electrode was located at Cz and the ground electrode at Fpz point (Fig. 5.4).

A standard cap system (Electro Cap Inc.) with Ag-AgCl electrodes was employed. In

order to prevent signal distortions, impedances at each electrode contact with the scalp

were kept below 5 KΩ, and balanced within 1 KΩ of each other.

Our EEG recording unit processed the following parameters: Number of channels: 8,

amplifying gain: 402, sampling frequency: 500 Hz, A/D converter resolution: 16 bits, input

resolution: 0.46 µV, noise: max 4.1 µV pp.(0.07 to 234 Hz), low pass filter: 234 Hz (-3dB),
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Figure 5.3: Subject during audio-visual stimulation session.
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Figure 5.4: EEG montage used in this study: Active electrodes are placed at F3, F4, C3,

C4, P3, P4, O1, O2 and reference and ground electrodes at Cz and Fpz points, respectively.

high pass filter: 0.07 Hz (-3dB). A digital high pass FIR filter with cut-off at 0.75 Hz, with

the width of 3000 data points, and with a Blackman window was utilized.

From the 8-channel signal between active electrodes and reference electrode six differ-

ence signals F3C3, F4C4, C3P3, C4P4, P3O1, and P4O2 were derived by off-line transfor-

mation in order to avoid undesirable effects of common reference electrode.

The total of 3200 electroencephalograms were analyzed first by online visual control

of the ongoing EEG in 8 channels and later by off-line analysis. Sequences contaminated

by either subject-related or technical artefact and obvious sleep occurrences were excluded

by eye inspection and according to the subject’s assessment. For the purpose of this
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study, about 1200 3-minute electroencephalograms recorded prior to AVS trainings were

employed. As the raw EEG was digitalized at 500 Hz, each 3-minute series contained 90000

data samples. A digital high pass FIR filter with cut-off at 0.75 Hz and with width 3000

data points and Blackman window was utilized.

Figure 5.5: User interface for recording software enabling to display 8 channel EEG with

online monitoring of power spectrum.

Measurement apparatus

For EEG recording we worked with two systems of amplifiers. The first system was

manufactured by P. Krakovský and adapted according to our requests. The second device

was commercially available NRS-2D (Lexicor medical technology, Inc.). Their technical

parameters are sumarized in the table 5.1. Software for data recording was made by our

colleague S. Štolc. This tool enabled us to observe 8 channel EEG with online monitoring

of power spectrum (Fig. 5.5).
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Table 5.1: Technical parameters of the amplifying units.

Unit I NRS-2D

No. of channels 8 2

Amplifying gain 402 8,000

Sampling frequency 500 Hz 128 Hz

A/D converter resolution 16 bits 12 bits

Noise [µV pp.] max 4.1 (0.07 to 234 Hz) max 2.5 average (0.5 to 32 Hz)

Low pass filter 234 Hz (-3dB) 32 Hz

High pass filter 0.07 Hz (-3dB) 0.5 Hz

Resolution 0.46 µV

Input impedance greater than 1 GΩ

Notch filtering - 60/50 Hz (Factory Definable)

Artifact rejection - automatic/adjustable

We chose the first unit for EEG amplifying and recording of the EEG data due to its

higher number of channels and higher sampling rate. The second unit we used for electrode

impedance checking and for preparational purposes.

5.2 AVS: Direct effects

Direct effects were mainly analyzed by relative powers in particular frequency bands.

From the whole 20-minute stimulation period we used time windows with stable stimulation

near 17, 4, and 2 Hz and a time window with unstable stimulation in alpha range. In order

to observe only the first harmonics of stimulation response we used narrow frequency

windows designated as ”17 Hz” (17.3-17.43 Hz), ”4 Hz” (3.81-3.94 Hz), and ”2 Hz” (1.87-

2.0 Hz). Broader frequency window 8-12 Hz was chosen for testing degree of entrainment

within alpha range (marked as ”10 Hz”), because stimulation in this range did not hold

stable frequency.

Question of entrainment was researched through changes of situation compared to non-

stimulation conditions. For the reference state we chose data prior to stimulation. From

these 3 -minute resting intervals relative powers of the same narrow frequency bands were

computed, resulting in reference values for each subject and session. Entrainment of brain

waves was evaluated as a ratio of relative powers in narrow frequency bands comprising
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stimulation frequencies (17, 4, 2, and 10 Hz in separate time windows) to respective relative

powers obtained from prestimulation sessions. Average reference relative powers through

all persons and all cortex locations were 0.2 (SD=0.11) µV 2 for ”17 Hz”, 0.5 (0.36) µV 2

for ”4 Hz”, 1.5 (0.91) µV 2 for ”2 Hz”, and 34.9 (20.9) µV 2 for ”10 Hz” ranges.

Brain-wave entrainment

Brain response to stimulation varied considerably. In Fig. 5.6 we present one of more

apparent case of brain wave entrainment during stimulation procedure depicted in 5.2.

Sensory input from AVS device comprised besides basic and also higher harmonic charac-

teristics (schematic Fig. 5.2 consists only from basic frequencies). The reason is that visual

input was rectangular due to sharp switches of LED diodes. Cortex reacted with angular

output with several harmonic frequencies as well (Fig. 5.6). In this figure also occurence

of preserved alpha waves is visible there (broad discontinuous stripe within 10-12 Hz).

Figure 5.6: Sample of successful brain wave entrainment: Dominant frequencies (dark)

versus time of a single EEG recording from occipital cortex region. Cortex was able to

follow the course of stimulation. Multiple traces belong to higher harmonics due to angular

input signal.

Direct reaction to AVS was well developed in majority of stimulation sessions. In Tab.

5.2 averaged entrainment values for all artefact-free data (across persons and sessions) are
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displayed. Relative powers in ”17 Hz”, ”4 Hz”, and ”2 Hz” increased in all cortex location.

The highest increase was observed in occipital part as visual cortex is located there. It is

apparent that from these regions the specific rhythm spread as far as to frontal areas of

the cortex. Without focusing on mechanism of spreading (generally synaptic or volume

conductance), its attenuation is notable in the table. In frontal region average reaction

was attenuated from 4 to 7-times. The highest increase of average relative band power,

30 times, occured in the right occipital location during 17 Hz stimulation (Tab. 5.2).

Single session maximum occured in left backward region during 17 Hz stimulation as well,

reaching 217-times higher relative power compared to prestimulation period (Fig. 5.7).

Table 5.2: Comparison of relative band powers in narrow frequency bands. Ratio of powers

from data during stimulation to powers from data prior to stimulation. Results for different

head regions and for averages through all persons and their sessions. Standard deviations

are provided in parentheses.

stimulation ratio of relative band powers

F3C3 F4C4 C3P3 C4P4 P3O1 P4O2

17 Hz 4.7 (3.2) 4.1 (3.2) 12.3 (12.1) 12.6 (16.1) 27.3 (29.7) 30.1 (35.9)

4 Hz 3.3 (2.7) 3.1 (2.3) 17.6 (20.6) 13.7 (11.9) 24.4 (21.1) 26.4 (22.7)

2 Hz 2.0 (1.2) 1.8 (1.2) 5.8 (7.9) 4.5 (3.9) 8.8 (7.5) 8.8 (6.0)

10 Hz 0.9 (0.4) 1.0 (0.6) 0.8 (0.3) 0.7 (0.4) 0.8 (0.4) 0.9 (0.5)

Table 5.3: Ratio of total powers (0.5-45 Hz) during stimulation to total powers prior to

stimulation for different stimulation frequencies. Averages through all persons and their

sessions. Standard deviations are provided in parentheses.

stimulation ratio of total powers

F3C3 F4C4 C3P3 C4P4 P3O1 P4O2

17 Hz 0.9 (0.5) 1.0 (1.0) 1.1 (0.9) 1.1 (0.8) 1.2 (0.8) 1.0 (0.4)

4 Hz 1.4 (1.9) 1.6 (2.6) 1.1 (1.0) 1.3 (1.4) 1.6 (1.0) 1.5 (0.9)

2 Hz 1.6 (2.2) 1.6 (1.5) 1.2 (1.2) 1.3 (1.1) 1.5 (1.2) 1.6 (1.2)

10 Hz 1.0 (1.0) 1.1 (1.0) 0.9 (0.6) 1.0 (1.0) 1.1 (0.6) 1.1 (0.7)
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Interestingly, total power during stimulation increased in majority of average cases, with

the highest increases of 1.6-times during 2 and 4 Hz stimulation in frontal and backward

cortex locations (Tab. 5.3). It means that the whole cortex was excited by stimulation.

For closer inspection of single unaveraged cases we displayed boxplots to follow vari-

ability in AVS/rest ratio. In boxplots median, 25-th and 75-th percentiles, minimal, and

maximal values are depicted. From boxplots in Figs. 5.7 - 5.9 we might see that variability

of cortex reaction was considerable, with extreme values not always in occipital regions.

For ”4” and ”2” Hz regimes maxima lie in central cortex region.

Figure 5.7: Boxplots for comparison of relative powers in 17 Hz narrow frequency band

from data recorded during stimulation to data recorded prior to stimulation. Six different

cortex regions are presented.

For quantification of a number of single sessions in which brain wave entrainment was

attained accounted all cases where the AVS/rest ratio exceeded certain treshold value. In

Tab. 5.4 there are displayed percentages of the cases when this ratio exceeded value of

1.5. It is apparent again, that the most successful entrainment is connected with EEG

originating in occipital areas as the dipole sources directly reacting to visual stimulation

are localized just there. Further apart from these sources the level of entrainment is

diminishing. The number of sessions with at least 1.5-time increase of respective relative

powers was registered from almost full number of cases (95-100%) in occipital regions to

46-85% in frontal regions.
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Figure 5.8: Boxplots for comparison of relative powers in 4 Hz narrow frequency band

from data recorded during stimulation to data recorded prior to stimulation. Six different

cortex regions are presented.

Figure 5.9: Boxplots for comparison of relative powers in 2 Hz narrow frequency band

from data recorded during stimulation to data recorded prior to stimulation. Six different

cortex regions are presented.
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Table 5.4: Entrainment in different frequency bands: Percentage of sessions considered

as successful entrainment. Criterion was a ratio of each session relative powers in narrow

frequency bands from data during stimulation to data prior to stimulation.

band location F3C3 F4C4 C3P3 C4P4 P3O1 P4O2

17 Hz 85.5 81.7 96.8 91.1 97.5 100

4 Hz 71.8 72.5 98.4 94.1 97.5 99.1

2 Hz 55.6 46.8 84.9 85.1 95.1 99.1

Also Lazarev et al. (2001) found that driving response varied with frequency and was

demonstrable in majority of cases (70-100%) of children and adolescents; according to

criterion peak amplitudes 20% larger than neighbouring frequencies. They observed the

strongest response in alpha and theta range. In our case ”17” and ”4” Hz entrainments

were stronger than ”2” Hz entrainment. This is in agreement with general knowledge on

SSVEP. SSVEP evoked by lower stimulation frequencies have longer time gaps to return

to baseline state and thus interfering more with spontanous EEG activity.

As AVS consists from two components of stimulation, we also tested importance of

audio stimulation and visual stimulation separately. Sources of auditory evoked potentials

(EP) are located in temporal cortex and in auditory brainstem structures. We checked out

an immediate reaction of audio stimulation on other than temporal locations. There was no

apparent influence on FC, CP, neither PO areas within stimulating frequency range. While

reaction to visual stimulation was apparent: Spreading of dominant peaks at stimulation

frequency also to other head locations (FC, CP, and PO) was observed. This seems to be

in accordance with literature (Zahradńıková, 2004); we have found the notion on spreading

of visual EP, but non on audio EP spreading.

Regarding subjective experiences, quite often participants reported different pleasant

and colorful visions during certain stages of the stimulation session. Sometimes personal

reminiscences surfaced. In one subject unbearable body feelings arose, so that he considered

to withdraw from the experiment.

Trends in entrainment

For analyzing evolution of the entrainment for specific stimulation frequencies during

the whole experiment period we examined trends of relative powers at group (inter-subjects
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averages) and subject’s level. The most significant increases were observed during 4 Hz

stimulation in central and occipital locations (Fig. 5.10). Response to ”2” Hz increased

in central cortex locations C3P3 and C4P4. Stimulation by alpha frequencies decreased in

central and occipital right regions.

Table 5.5: Schematic depicting of rising (↗) and decreasing (↘) trends during AVS at

specific frequencies.

band/ location F3C3 F4C4 C3P3 C4P4 P3O1 P4O2

17 Hz - - - - - -

4 Hz - - ↗ ↗ ↗ -

2 Hz - - ↗ ↗ - -

10 Hz - - - ↘ - ↘

0
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15

20

1 25
session number

%

Figure 5.10: Evolution of relative power in narrow frequency band around 4 Hz (0.13 Hz

width) in P3O1 location during 4 Hz stimulation (standard deviation depicted by bars).
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5.3 AVS: Transient effects

For purpose of exploring transient effects of the stimulation, data recorded after AVS

were compared to those recorded before AVS. In the following paragraphs we present

transient effects and their evolution during the course of the experiment.

Transient effects

We examined differences in individual measures during post stimulation period in re-

spect to prestimulation period. Wilcoxon matched-paired test was chosen to quantify dif-

ferences between two groups (section 4.6). For significant change at personal level weaker

critetion was applied (see section 4.6).

The strongest changes in spectral domain occurred in higher frequency bands 12 - 45

Hz across all cortex regions. Absolute power from this interval decreased after stimulation

in comparison with period prior to stimulation.

Attenuation of beta-1 power in C3P3 (p < 0.0005), C4P4 (p < 0.0005), P3O1 (p <

0.0005), and in P4O2 (p < 0.0005) was observed compared to prestimulation period, beta-2

power in F3C3 (p < 0.0005), C3P3 ( p < 0.017), C4P4 (p < 0.038), P3O1 (p < 0.0005),

and in P4O2 (p < 0.0005); gamma in F3C3 (p < 0.0005), F4C4 (p < 0.0005).

Other spectral changes were found in spectral edge 95, a decrease in P4O2 (p < 0.043),

and in spectral entropy, a decrease in P3O1 (p < 0.0005).

EEG complexity displayed a decrease with Shannon entropy in C3P3 (p < 0.006) and

increase with correlation dimension in C4P4 location (p < 0.03).

Positive shifts were obtained for interdependencies evaluated synchronization between

left and right hemisphere in both lower and higher frequency ranges. Overall interhemi-

spheric cooperation slightly improved in wider frequency spectrum, inspite of the fact that

both linear correlation and mutual information did not shift significantly.

The strongest increase was revealed for coherence in theta-1 band in central and parieto-

occipital (p < 0.0005, 0.012) areas, alpha-1 coherence increase in central (p < 0.0005) and

beta-2 coherence increase in frontal regions (p < 0.039).

Subjective measure evaluating general release accomplished during the second relax-

ation period indicated subjectively better relaxation performance compared to the first

resting interval (p < 0.002).

For the whole collection of the results see appendix B, Fig. 8.4. Results from transient
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AVS effects might be interpreted in the following way: Power attenuation in beta range

may be understood through the fact that during post AVS resting session subjects were

already lying for 25 minutes in darkened room with eyes closed. Their resting state differed

from their normal conscious brain state more than that during resting session prior to AVS.

Thus their conscious was altered from wake one connected with activity in beta domain.

Similar results were obtained also from the control group. After half of an hour of resting

participants felt significantly better, which was reflected in a rise of subjective evaluation of

general release during the second relaxation period compared to the first relaxation period.

Trends in transient effects

From values of each individual measure obtained after AVS we subtracted values ob-

tained prior to stimulation. Trends during the whole training process were tested by

significance of nonzero slope in linear regression model (the same statistical test as used in

evaluation of long-term AVS effects).

From spectral measures significant increase of absolute power in beta-1 (12-16 Hz)

occured in F4C4 (p < 0.003) and decrease in C4P4 (p < 0.01) locations. Higher number of

significant trends was found within relative band powers: Increase in theta-1 and theta-2

bands, increases in beta-1 and beta-2 in frontal channels (for the whole collection of the

results see appendix B, Fig. 8.6 and 8.7 ).

Spectral entropy increased on the right side of the cortex (F4C4, C4P4, and P4O2

locations; p < 0.027, 0.0028, 0.04). Spectral decay increased in F4C4 area. From complexity

characteristics we found that Shannon entropy significantly decreased in F4C4 region (

p < 0.046), which was opposed by increase of correlation dimension in the same area (

p < 0.01).

Connectivity between hemispheres in parieto-occipital region strengthen gradually, as

both interdependency measures linear correlation coefficient and mutual information in-

creased significantly (p < 0.006, 0.036). Increases were obtained for coherence in alpha-1

band in central regions (p < 0.003), and beta-1 coherence in central and parieto-occipital

areas (p < 0.0003, 0.005).

Subtraction of the subjective measures that evaluated general release accomplished

during the first and the second relaxation period showed no significant trend.

Summarisingly, mainly positive development of relative powers in 4-8 Hz and 12-30 Hz

range, and in various coherences were found. These results may indicate that subjects, as

the training progressed, were able to utilize sessions in some respect more effectively.
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5.4 AVS: Long-term effects

Our aim was to uncover statistically significant trends in examined measures. Evolu-

tions of test group averages during the whole course of the AVS training (i.e. two month)

were calculated for each individual measure. Only EEG data of 3-minute duration prior

to stimulation were taken. For these 25-data-point time series linear regression model

Y = a + bX + e was derived, and its significance was tested by an ANOVA F-test (section

4.6). Besides this, criterion for consistency at personal level was added (see section 4.6).

Spectral measures

In this section we present only absolute band powers, as there was higher number of

significant trends from them than from relative power bands. In the appendix there are

presented significant trends from both absolute and relative power bands. For the whole

collection of the results see appendix B, Fig. 8.8 and 8.9.

We discovered significant trends in the contribution of lower frequencies and in the

measure of right hemisphere activation. Significant increase of power in theta-1, theta-2,

and alpha-1 band was observed in frontal and central regions. While theta-1 and theta-2

displayed significant increase in F3C3 (F(1,23) for all, p < 0.04 and p < 0.0004), C3P3

(p < 0.002 and p < 0.008), and C4P4 (p < 0.024 and p < 0.0002) locations, alpha-1 showed

increase in all four areas F3C3 (p < 10−5), F4C4 (p < 2.10−5), C3P3 (p < 0.0004), C4P4

(p < 5.10−5)(Fig. 5.12). Other significant trends were decrease of delta-1 power in C3P3

(p = 0.046), increase in alpha-2 in F3C3 (p < 0.009) and in C3P3 (p < 0.04), increase of

beta-2 in C3P3 (p < 0.007) and C4P4 (p < 0.0004), increase of gamma in C4p4 (p < 0.001)

and decrease in P3O1 (p < 0.005)(Fig. 5.12).

Other significant trends were decrease of delta-1 power (C3P3), increase of alpha-2

(F3C3, C3P3), increase of beta-2 (C3P3, C4P4), increase of gamma (C4p4), and decrease

of gamma (P3O1), however these changes were not generally so extensive as changes in

ranges mentioned above. A sample of spectral density shift in various frequency bands is

presented in Fig. 5.11.

In spite of the fact that in parieto-occipital regions we did not detect rise of lower

frequencies (apendix Fig. 8.9), the spectral edge 95 significantly decreased in P3O1 (p <

0.0006) and P4O2 (p < 3.10−5) locations of the cortex (both approximately from 22.5 to

19 Hz) (Fig. 5.12). Spectral edge 61 increased in C3P3 (p < 0.035) and decreased in P4O2

(p < 0.0024). Spectral edge 78 increased in C3P3 (p < 0.0011).

The increase of lower frequency bands (4-10Hz) may correspond to findings on physio-
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Figure 5.11: Spectral density of absolute power in C4P4 location after the whole experi-

ment (white) compared to initial values (grey). 3-minute data prior to stimulation, group

averages. The most expressive increase was observed in alpha-1 band.

Figure 5.12: Illustration of significant trends in spectral measures across cortex regions.

Complete spectral results are presented in appendix B (Fig. 8.8).

logical rest during meditation obtained by Aftanas and Golocheikine (2001), that reflects

emotionally positive state and internalized attention. According to Basar et al. (2001) theta

and alpha rhythms might reflect fundamentally different functional operations. A concept

of ’selectively distributed theta system’ was proposed by him, covering structures located
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in different brain areas able to produce theta activity spontaneously or as a reaction on

external or internal stimulus. Theta might deal with integrative cognition and association

functions and in frontal cortex also with response-controlling function: Increased theta

power implies decreased reaction of the cortex to sensory stimulation (Basar et al., 2001).

Increase of alpha rhythms might be functionally correlated to several types of cognitive,

sensory and motor behavior (Schurmann and Basar, 2001).

In order to find out whether any long-term effect depending on relative alpha strength

occurred, we divided participants into high and low-baseline alpha group according to initial

values of their alpha band power ratio. In contrast to Rosenfeld et al. (1997), participants

from the low-baseline alpha group didn’t change their alpha band power ratio distinctly

from participants from the high-baseline alpha group.

Total power (0.5-45 Hz) increased significantly in central region C4P4 (p < 0.03). Also

in all other areas power increased (Fig. 5.13), which resembles findings of general increase

of total power during sleep onset observed by Ogilvie et al. (1991). We detected left-

right asymmetry of total power distribution in central cortex locations as well. Moreover,

its dynamics during the whole course of the experiment displayed a shift from the left

to the right hemisphere (Fig. 5.13). The phenomenon of enhancing the right hemisphere

activation was reported to be state-effect linked to altered states of consciousness (Graham,

1977). The more detailed view on the frequency bands uncovered that the same power shift

was apparent in central cortex regions in theta-2 and alpha-1 bands: During the training

weeks the dominant activity of dipole sources in frequency interval 6-10 Hz moved from

the left side to the right side of the cortex. In experiment without training done by Pereda

et al. (1999) were found interhemispheric differences during waking in the alpha band:

values from the right hemisphere were higher than those from the left one.

Figure 5.13: Progress of the total power during the whole training (from grey to white).

3-minute data prior to stimulation, group averages. The shift from the left to the right

side activation during the course of the experiment in central region is apparent.
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Linear and nonlinear complexity measures

Spectral entropy as a linear complexity measure significantly increased in C3P3 (p <

0.005) during the training period (Fig. 5.14).

Figure 5.14: Illustration of significant trends in complexity measures across cortex regions.

Complete complexity results are presented in appendix B (Fig. 8.9).

Spectral decay appeared to be one of the most successful measures for detecting long-

term AVS changes. Strongly significant increases in all six cortex regions were obtained:

F3C3 (p < 5.10−6), F4C4 (p < 4.10−5), C3P3 (p < 7.10−8), C4P4 (p < 4.10−8) (Fig. 5.15),

P3O1 (p < 3.10−7), and P4O2 (p < 3.10−5). Relative length showed to be sensitive in

some locations, as it increased in C3P3 (p < 0.026) and decreased in P3O1 (p < 0.0024)

area.

Increase in both histogram-based entropy estimators was obtained in F3C3 location

(p < 0.048) (Fig. 5.14). Topologically wider changes occurred also in the correlation

dimension that decreased in all six locations, significantly in three of them: F3C3 (p <

0.0007), F4C4 (p < 3.10−5) (Fig. 5.16), and C4P4 (p < 0.0007) (Fig. 5.14).

These decreasing trends correspond to some previous findings. Some authors reported

decreasing values of CD with deepening of the level of sleep and the level of anaesthesia

(Rosipal, 2001; Kobayashi et al., 2000). Aftanas and Golocheikine (2002) found a decrease

in dimensional complexity estimate over midline frontal and central regions during medi-
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Figure 5.15: Evolution of spectral decay in C4P4 location (standard deviation depicted by

bars).

Correlation dimension
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Figure 5.16: Evolution of correlation dimension estimates in F4C4 location (standard

deviation depicted by bars).

tation. Elbert et al. (1994) found reduced CD in those areas in which networks became

actively engaged.

In contrast, Jeong (2004) interprets reduced EEG complexity in connection with Alzheimer’s

disease as diminished information processing of the cortex due to the inactivation of pre-

viously active networks or a loss of dynamical brain responsivity to external stimuli.
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Anyhow, claims of low-dimensional dynamics in brain behaviour have to be taken with

very much scepticism. In spite of the fact that most estimates of low dimension from

complex experimental data seem to be artefacts (most often artefacts due to small data

set (Krakovska, 1995)), estimated CD is expected to provide a valuable relative, generic

measure of the dynamical complexity of a signal. In this study, we tried to avoid problems

with small data set size (we used 87,000 points) and with the effect of low pass filtering

(our measuring device fully covered frequency band from 1 to 100 Hz). As a result, a

significant indication of relatively low values of CD about 3-6 was found.

Theiler (1986) and other authors have shown that changes in some spectral properties

of data, especially in correlations, may lead to spuriously low estimates of dimension.

In accordance with these findings, we suppose that the observed decreasing trends in

correlation dimension behaviour relates to the increase of power in alpha and theta bands.

Consequently, we treat CD not as an indicator of low-dimensional dynamics but only

as a relative measure of changes in the course of the experiment.

We used a number of complexity measures of different origin. As it can be seen from

Fig. 5.14 some of them seem to correlate to higher extend, e.g. correlation dimension

and spectral decay. Their negative correlation may be supported by both theoretical and

empirical arguments. It is also known that spectral decay should correlate with fractal

dimension that was not used in this study. However, some other measures from Fig.

5.14, that were treated as complexity measures in this study, seem to point to different

directions, probably due to their different origins and hence different properties regarding

their reactions to EEG changes.

Interdependency measures

Interhemispheric interdependency measures namely linear correlation coefficient, mu-

tual information, and coherence were evaluated between fronto-central (F3C3-F4C4), centro-

parietal (C3P3-C4P4), and parieto-occipital (P3O1-P4O1) locations. Both linear correla-

tion coefficient and mutual information significantly decreased in parieto-occipital parts

(p < 0.006 and p < 0.007) (Fig. 5.17). Mutual information appeared to be almost two

times more sensitive in relative change from initial values than linear correlation (28% vs.

16% decrease).

Principal match of both trends confirms that interhemispheric relationship was mostly

of linear type. This is in agreement with findings of Pereda et al. (2001) and Breakspear

and Terry (2002) stating that nonlinear interdependencies occur infrequently in normal

human EEG.
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Figure 5.17: Illustration of significant trends in interdependency measures across cortex

regions. Complete results for interdependencies are presented in appendix B (Fig. 8.9).
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Figure 5.18: Evolution of frontal inter-hemispheric coherence in alpha-1 band (standard

deviation depicted by bars).

Coherence analysis revealed significantly increased coherence in the alpha-1 band in

frontal regions (p < 0.027) (Fig. 5.18), indicating improved frontal hemisphere cooperation

in this specific frequency band. However, theta-1 and theta-2 coherences displayed opposite

trends in this region (p < 0.0003 and p < 0.036) (Fig. 5.17). In other ranges delta-

1 coherence increased in parieto-occipital area (p < 0.049), delta-2 coherence decreased
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in fronto-central (p < 7.10−6) and increased in centro-parietal (p < 0.014) area, alpha-2

coherence decreased in parieto-occipital (p < 0.01), gamma coherence increased in centro-

parietal (p < 0.01) and in parieto-occipital (p < 0.024) region.

The increase of alpha-1 coherence might be related to findings of Cantero et al. (1999)

concerning significantly higher alpha coherence in frontal area compared to central and

occipital locations during relaxation period.

Subjective assessment

At the beginning of our long-term training, only 2 out of 6 volunteers were optimistic

about the possible impact of the AVS training on their relaxation abilities. One of them

had neutral opinion, and three persons did not expect any progress of relaxation abilities

for the future.

Perception of the training process showed the following results. General well-being

before each day relaxation period (answering question ”How do you currently feel?”, ap-

pendix A, Fig. 8.2) displayed no significant trend. Subjective measure that evaluated

general release accomplished during the relaxation interval (”Assess a level of your re-

lief accomplished during the prestimulation period.”) showed significantly increasing trend

(p < 0.037) (Fig. 5.19) towards better performance. Both subjective measures were rated

on 7-point bipolar scale. In spite of the fact that from the subjective results certain progress

of relaxing effects is apparent, spontaneous relaxation abilities evaluated at the end of the

whole experiment were perceived as unchanged.

Between-group comparison

Inspite of the fact that we did not employ fully acceptable control group, besides our

test group we engaged in the same measurement procedure two other volunteers. Instead

of AVS they listened to relaxation music. The significant results of the test group were

compared with results obtained from this small control group. Between-group comparison

was implemented by linear regression F-test (see section 4.6).

The control group did not display consistent agreement with the most of the significant

trends from the test group. Significant trends in the same direction for the both groups

were found only for power delta-1 in C3P3, power theta-1 in F3C3, power beta-2 in C4P4,

power gamma in P3O1, spectral edge in P4O2, and spectral entropy in C3P3. On the

other hand significant differences in trends between the groups tested by F-test were found

for power gamma in C4P4 (F(1,46) for all, p = 0.015, significant increase for AVS versus
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Figure 5.19: Evolution of subjective assessment of the relief accomplished during relaxation

(standard deviation depicted by bars).

nonsignificant decrease for controls), histogram-based entropy in F3C3 (p = 0.046, signifi-

cant increase/nonsignificant decrease), and for correlation dimension in F4C4 (p = 0.014,

significant decrease/nonsignificant decrease). In all these cases only controls with the same

direction (increase or decrease) of their trends were considered.

5.5 Discussion on AVS

In this section we discuss long-term effects of AVS. To our knowledge, our study repre-

sents the first attempt to systematically test the hypothesis that long-term use of varying

audio-visual input can have extended effects on electro-cortical activity. Our results show

that regular training with AVS does induce changes in the cortex functioning, similar to

those commonly reported to be features specific to relaxation or altered states of conscious-

ness.

In the literature, however, there is no clear definition of EEG descriptors of relax-

ation. One of the useful information sources appears to be the research on meditation,

where various types of meditation can be considered as procedures with a relaxation effect

(Banquet, 1973; Aftanas and Golocheikine, 2001; Travis, 2001). With increase of medita-

tion condition, increase of depth of relaxation usually appears, confirmed by subjective and

other physiological parameters, such as respiratory rate, skin conductance, plasma lactate.

Neurophysiological indicators for a state of sensorimotorical and mental rest are usually
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considered to be the increase of alpha and theta frequencies (Banquet, 1973; Brown, 1970)

and inter-hemispheric synchronization, especially frontal alpha coherence (Travis, 2001).

In our long-term AVS study, the power increase was not detected in alpha range (8-12

Hz), but more significantly in a rather shifted frequency range (4-10 Hz) merging the

theta-1, theta-2 and alpha-1 range. The rise of coherence in alpha-1 band in frontal area

was observed as well, although general synchronization did not occur, i.e. both linear

correlation and mutual information in frontal region did not display any increase.

As a contribution to linear characteristics, we found significant trends in the behaviour

of some non-linear measures. Long-term decrease in mutual information exactly followed

decreasing evolution of linear correlation. Actually, mutual information appeared to be

more sensitive than linear correlation.

However, trends of spectral entropy do not match changes in nonlinear complexity

measures. This may be example of a case when nonlinear complexity measures might

represent new possible indicators of dynamical changes of resting EEG, or these changes

might be indexed better by a combination of linear and non-linear EEG variables.

Another relationship between non-linear and linear measures may be given by possible

connection between the spectral features of data and dimensional estimates. It is possible

that the decreasing trends of CD and increasing trend of theta and alpha band powers are

reflections of the same spectral changes of EEG signals.

We can not exclude a possibility that certain contribution to increased relaxation effects

could come from repetitive relaxation training itself, regardless the use of AVS. Subjects

might adapt gradually to experimental conditions and develop a kind of conditioned re-

sponse reflected in trends of studied measures.

In spite of the fact that we did not employ fully acceptable control group, we engaged

in the same measurement procedure two other volunteers. Instead of AVS they listened

to relaxation music. The significant results of the test group were compared with results

obtained from this small control group. The control group did not display consistent

agreement with most of the significant trends from the test group.

Thus it seems that AVS training could be more effective in inducing long-continuint

changes of EEG than regular 20 minute listening to relaxation music. However, we must

stress again that this fact was not supported by strong statistical evidence because our

control and test group could not be properly compared.

Despite our findings about the measurable influence of AVS, we are very skeptical

regarding the declarations found in various manuals of popular AVS machines claiming
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that after some training (minimally 30 repetitions) one may learn to distinguish among

beta, alpha, theta and delta ”states” and even to induce these states voluntarily when

desired.

The present study was conducted to fill a gap in the knowledge of brain functioning

during long-term AVS training. Gathered evidence in a form of trends of certain linear

and nonlinear measures indicates that AVS training may serve as useful tool for evoking

long-term changes in resting EEG and in the improvement of relaxation abilities.

However, further research is needed to support extensive clinical applications of AVS

technology. For future studies we suggest investigation of long-term AVS with simultaneous

recording of other relevant physiological parameters (e.g. ECG, electrodermal resistance,

respiratory rate, or plasma lactate) for determination purposes, and post measurements

after longer time-period from completion of long-term AVS experiment. As an implication

for future studies we suggest testing of the AVS under proper control conditions (at least

10 vs. 10 subjects), with at least 30 stimulation repetitions, and with temporal electrode

placement in addition to our montage, due to auditory cortex location.



6

EEG characteristics of relaxation

(Part B)

In the second part of the thesis our experiences and measures from AVS experiment

were applied to exploring EEG characteristics during psycho-physiological relaxation. The

relaxation response is an integrated mind/body reaction, which has been found to have such

benefits as increased mental and physical health and improved ability to deal with tension

and stress. In the literature we had found no direct characterization of EEG features

of relaxation. Analyses of resting status of patients may be useful for stress reduction

also in connection with sleep deprivation. Another potential applications might be in

development and testing of efficiency of pharmacological substances related to hypnotic

and sedative drugs, concerning their impact on resting abilities.

Poor relaxation response is usually connected to problems of stress. Actually, stress

is acknowledged as one of the major problems of modern society. While calling for stress

reduction, need for monitoring tools for stress may grow. Knowledge about rest and

relaxation status, as counterpart to stress level, might be used as indicator in neurofeedback

application. Aim of such self-regulative training would be in voluntary attainment of higher

quality of psycho-physiological rest.

Problems related to detection of resting states, physiological mechanisms of arousal

and attention are currently studied for scientific, clinical and technical purposes. Our

study may belong to broader topics from which one of the most actual area is reliable

interaction between human subject and artificial system, e.g. of transportation nature

where human factor is directly involved and undesirable change of operator’s state may

have severe consequences. Topic of sensori-motorical rest may be regarded as relevant for

63
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such research area, as it is supposed that under resting conditions changes of arousal and

decrease of attention and reactivity usually occur.

It might be difficult to define relaxation properly. First of all, it is related to subjec-

tivity and may vary across individuals. Implicitly, under the term relaxation it is usually

meant certain positive and beneficial phenomenon. Periodical relaxation should have many

other main and side effect on different psychical and physiological parameters of individuals

(related e.g. to aging, digesting, general peace, psycho-somatic deceases). There exist no

accepted references in a form of other physiological parameters. According to Travis (2001)

five different categories of physiological variables might be sensitive to level of relaxation.

Breath and heart rate index general metabolic level. Heart rate variability in the breath

frequency (respiratory sinus arrhythmia or ’high frequency’ heart rate variability) index

differences in parasympathetic tone. Skin conductance levels reflect differences in sympa-

thetic tone. Degree of sympathetic reactivity correlate with skin conductance responses

to punctual stimuli during relaxation. On the other hand for characterization of stress

level following parameters are reported as appropriate for use (Vavrinský, 2005): galvanic

skin response, heart rate, blood pressure, and breath rate. (Foster, 1990) mentions physio-

logical components of relaxation response to be decreased oxygen consumption, decreased

respiratory rate, decreased heart rate, and increased alpha brain wave production.

By addition of selected EEG characteristics to set of established parameters additional

information may be utilized for better observation of relaxation or stress status.

Researchers usually consider increased alpha production during mental and physical

rest (Lindsley, 1952; Brown, 1970; Foster, 1990). According to Ossebaard relaxation itself

is made up of several biological, psychological, and social components. The established

observation that relaxed subjects show increased alpha wave activity may have inspired

the idea that the presence of alpha activity equals relaxation. That is a reductionist

circularity that denies the intricate nature of relaxation (Ossebaard (2000)).

Thus we set a goal to explore basic EEG characteristics during resting conditions. In

this part of the thesis three consequent tasks were addressed:

1) Finding changes in EEG measures during sensori-motorical rest reflecting functioning

of central nervous system. Characterization of the processes occurring during 3-minute

resting conditions.

2) Selecting the most appropriate objective EEG features that are able to distinguish

between more and less successful relaxation determined by subjective assessment.

3) EEG feature selection for practical recognition of two relaxation classes. Discriminant
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analysis with Fisher classifier and artificial neural networks.

6.1 Materials and Methods

EEG recordings were used from AVS experiment and are described in the section 5.1.

EEG montage, recording, amplifying, and filtering systems were the same as in the Part

A of this thesis. Only data prior to AVS were counted. From each of 8 subjects we had

21-25 recorded sessions.

For task 1), from each participant we chose 11 recordings without artefacts (all 6

artefact-free difference signals). For task 2) and 3), out of 11, for each subject we chose 4

least and 4 most successful artefact-free relaxation sessions. Choice was done according to

answers to the following task: ”Assess a level of your relief accomplished during 3-minute

resting period.”. This subjective measure was rated on 7-point bipolar scale.

Three-minute EEG recordings were firstly filtered and remaining 174 sec. data were

divided into 84 time windows for most of the measures and into 24 time windows for

coherences. These values were obtained from optimization in order to achieve maximal

number of time windows with minimal necessary frequency step in Fourier transform. In

order to diminish variance of computed measures symmetrical moving average was applied

using values from 5 preceeding to 5 successive data points.

40 different EEG measures explained in Part A were used. 29 single: total power, 9

absolute and 9 relative band powers, 3 spectral edges, spectral decay, 3 entropies, relative

length, and 11 interdependencies: linear correlation coefficient, averaged mutual informa-

tion, and coherences in 9 bands. Only correlation dimension was omitted due to its need

for minimal number of data points - its evolution with smaller data windows could not be

properly applied. Three portion parameters were used for spectral edge frequency. Besides

established 95 also 50 and 80% were employed. These were chosen from search for optimal

parameters in order to gain the steepest trends for spectral edge frequency during 3-minute

resting data.

Sensitivity comparison

The important question is what to understand under measure of sensitivity in general.

In our case it should be an ability to represent subtle psycho-physiological changes on time

basis, or even to distinguish different subtle states.

We observed evolutions of various measures during 3-minute intervals, most of them
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could be interpolated by linear regression. For samples see Fig. 6.1. The criterion evalu-

ating magnitude of trends may be p-value from testing wheather slope differing from flat

one according to linear regression model (in the same way as it was used in section 5.4 and

explained in section 4.6. Unfortunately, for majority of average trends this criterion was

not suitable as their p-values were smaller than 10−10.

Absolute changes (in respect to linear regression) are not suitable for different measures

as they are expressed in different units, and thus not comparable. Relative changes (ab-

solute changes divided by beginning value of their linear trend) do not reflect sensitivity

well, as it is invariant only to multiplication by constant and not to addition (whereas

p-values are invariant). However, when absolute change is divided by standard deviation

of residuals in respect to linear regression, one obtains reasonable alternative to p-value:

∆res =
∆abs

std(res)
(6.1)

It is not dependent on units, and invariant to multiplication and addition by constant.

Thus not only absolute change is important but data variance around linear regression

model is relevant as well.

For our purposes we used discriminating power defined in this way and termed it residual

relative change (∆res). Dimensionless units are easy to interpret: for recognition of nonzero

trend with naked eyes it is preferable for ∆res to be above 1. Further above 1, more apparent
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Figure 6.1: Samples of different trends during 3-minute evolution. Nonzero trends evaluated by
residual relative changes and p-values (two upper values).
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Figure 6.2: Relation of p-value of nonzero trend and residual relative change. All data from
section 6.2 were used. Narrow ’hat’ corresponds to measures with 74 points on abscissa axis
(consisting from over 15000 points) and broad ’hat’ corresponds to measures with 14 points on
abscissa axis (consisting from over 2000 points).

the change is (Fig. 6.1). It is well related to subjective level of trend recognition from graph:

two-times higher ∆res matches approximately two-times higher subjective recognition ease.

Or 2-times higher absolute change implies approximately two times higher ∆res under

assumption of similar standard deviation of residuals. P-values do not follow such linear

scheme. Formula 6.1 has a similar form to that of t-statistics for slope estimate of linear

regression, t = b̂
std(b̂)

, where b̂ is estimate of slope usually counted from the least square

minimization of residuals. Numerators of these two formulas differ only by constant. It

can be shown, that between denominators there is a relation. In addition a few constants

figure therein, namely number of data points and set of abscissa axis values. Thus p-values

that result directly from this t-statistics and ∆res are in unambiguous correspondence (see

Fig. 6.2).

EEG features

Residual relative change is not the only type of feature suitable for discerning two

evolution curves. Different might be also initial and terminal values of linear regression

model. From character of our data linear fitting was sufficient and only usable. These two
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types of features were added to ∆res to form a set of 585 features, 195 measures in different

cortex locations with 3 characteristics for each (∆res , beginning, and end).

To mention another alternative, it was possible to join several features from a single

curve together, e.g. starting point and slope of linear regression. Then statistical testing

with two-dimensional features would be applied. Due to different confidence intervals

some slightly insignificant features could become significant (and vice versa). However

disadvantage would appear with no possibility to discern whether differences were caused

by slopes or starting points.

Feature selection

Feature selection is used for reducing the dimensionality of the data. It leads to simplifi-

cation of data evaluation and to reduction of data processing complexity. Special programs

for feature selection were implemented in Matlab (release 14, version 7.0.1). Two different

methods for discriminant analysis of two relaxation classes were used: Fisher classifier and

classifier made of artificial neural networks. Both were taken from Matlab toolboxes.

Fisher discriminant analysis is well-established classification method for multivariate

normal distributions of each class (Therrien, 1989). In case of unequal covariance matrices,

quadratic variant of Fisher discriminant analysis is preferred. Multivariate normal densities

with covariance estimates stratified by group are estimated. Then by using the likelihood

ratio any introduced element may be classified into one of the classes. Having the same

cardinality of our two classes, we used Fisher classifier for equal prior probabilities for each

class. Nonnormality of the data could violate optimal properties of classification rules.

However it is known, that they could perform quite well even when normality assumption

is not fulfilled.

Artificial neural networks (Kvasnička et al., 1997) are structures inspired by functioning

of biological neural networks formed by neurons and synapses. Interconnected groups of

artificial neurons use a computational model for information processing based on a connec-

tionist approach to computation. Their global behaviour is determined by the connections

between the processing elements and element parameters. During their training weights of

connection between individual neuron are flexibly trained.

We used feed-forward back propagation network with three layers. Our optimizations

and estimates led us to four neurons in hidden layer. This respects a number of possible

regions in feature distributions, where element from one relaxation class may prevail those

from the other class. Method of gradient descent was chosen for modification of weights

between training epochs moving towards lower classification error.



6. EEG CHARACTERISTICS OF RELAXATION (PART B) 69

From classification of a set of elements by any methods one obtain numbers of well and

wrong classified elements. From them probability of misclassification - misclassification

rates or errors are computed. We have two classes of features R− and R+ (less and

more successful relaxation). Conditional probability of misclassification for each class was

defined. Probability for misclassification of elements belonging to R− as R+:

P(R+|R−) =
number of misclassified elements from R−

number of all R− elements
(6.2)

and misclassification of elements from R+ as R−:

P(R−|R+) =
number of misclassified elements from R+

number of all R+ elements
(6.3)

A total error, as a measure of classification efficiency, is defined as

P =
number of all misclassified elements

number of all elements
(6.4)

Later in text we use labeling E1 and E2 for P(R+|R−) and P(R−|R+).

Discriminant analysis can be performed in two modes: classification without and with

testing. In the former method is trained on all available data and error rates are computed

from the same data set. In the latter, before training some portion of available data is let

aside and after parameters are fixed by training, elements from this testing set are applied

in order to obtain error rates.

Usually it is not possible to test all combinations of features due to computational time

demands. One may choose from several selection algorithms. Concerning feature selection

methodology, there are three basic ways how to create set of selected features: forward

(gradual building set of features) or backward selection (gradual reducing), or hybrid way,

so called floating search methods using both building and reducing according to defined

rules (Theodoridis and Koutroumbas, 1999). We used building alternative, where features

are added to previously selected ones. By this technique we obtain semi optimal set of

features, usually with not far from the best possible misclassification rates.

Let us illustrate technique of forward feature selection in case of testing procedure

involved. Let portion of training data is 90 % (training set cardinality 0.9), so 10 % of

data is taken aside for testing purposes. We have already chosen N - 1 features before

and we are attempting to add feature X to N - 1 preceding features. In one single cycle

90 % of data is randomly selected. During training, parameters for classification purposes
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are obtained. Then resting 10 % of data is taken as new data we need to classify. In

fact, classes are known, thus we may calculate classification errors. This cycle is repeated

according to number of trials in order to objectify results by choosing of different 90 %

subsets of original data set. One obtains a set of triplets of errors (total and two partial

errors). For each error mean and standard deviation is calculated. Mean of total error is

a criterion for feature selection: Feature X would be added to N - 1 preceding features if

it has smallest mean error compared to other feature candidates.

Random choice of our data for training was constrained in a way that 90 % from

each class was always taken. For Fisher classifier number of trails was set to 100 and

for artificial neural networks to 10. Both were restricted by computational time. Feature

selection without testing works in a similar way, just it is simpler, with number of trials

equals 1 as 100 % of data is taken as training set. Then results are provided without

standard deviations of classification errors.

6.2 Characteristics of sensori-motorical rest

Firstly, we focus on characteristics for a group of all artefact-free resting sessions,

whether more or less successful according to subjective assessment, in order to discover

general features of the resting process. An assumption is that strong nonzero trend reflects

certain changes in physiological functioning. During this task we test sensitivity of mea-

sures used in these conditions in order to find the most appropriate EEG characteristics

for observing such subtle changes.

Trends of 195 different measures at different locations were investigated at two lev-

els: average and individual. In the former for each measure 88 evolution graphs were

computed (from 8 persons per 11 artefact-free sessions). These evolutions were averaged.

Then moving average was applied. Residual relative change ( criterion I) and p-value of

nonzero slope in testing linear regression model (crit. II) were computed. In the latter

for each single measurement moving average was applied and residual relative change was

computed. Mean of these individual ∆res served as criterion III. Another important entry

was a percentage of sessions where trends had the same direction (decrease or increase)

as average trend ( crit. IV). We looked for the most sensitive characteristics according to

these four criteria. Naturally, 4 charts looked differently. At average level number of trends

were very strong. Thus criterion II was not practical as most of the averaged curves were so

distinctly steep, that their p-value was lower than 10−10 which resulted in its rounding to

0. In some cases out of these, the number of sessions possessing trend in opposite direction
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was very high (e.g. 44%). Thus we had to take into account single session level. There

we chose a treshold of 70% for criterion IV. From them several weaker results according to

criterion I were omitted.

In tab. 6.1 measures with the strongest trends are listed with their values of ∆res from

their averaged graphs, means of ∆res obtained from graphs derived from single sessions,

percentages of sessions holding the same trend directions as the averaged trends, p-values

reflecting their nonzero trends, initial and terminal values, and relative change (terminal

value divided by initial value, in percents) of linear regression model of averaged curves

during 3-minute evolutions. Measures are listed according to their type and number of

appearances in different cortex locations. In Fig. 6.3 samples of averaged behavior of

measures in certain cortex locations with strongest trends of time evolution during resting

conditions are depicted.

Difference between values of ∆res and means of ∆res is due to the fact that former is

obtained from averaged graphs while latter is a mean from single graphs. Understanding

follows from a point, that 88 graphs with some residuals around linear trend, when put

together, decrease residuals by averaging of these ”fluctuations”.

According to Tab. 6.1 sensori-motorical rest can be the best characterized by trends of

following EEG features: First and foremost by decrease of absolute alpha-1 power across

all cortex regions. This was supported not only by decrease of total power in some areas

(both frontal, C3P3, and P4O2) but also by decrease of relative alpha-1 power in backward

(P3O1, P4O2), F4C4, and C3P3 locations. Also absolute beta-2 power decreased in central

regions (C3P3, C4P4). Both relative powers in theta-1 and in gamma bands increased in

P3O1 region. Spectral edge 95 and 80 increased in F3C3. From untraditional measures

spectral decay decreased in P3O1 and C3P3 and relative length increased in F3C3 area. No

interdependency measures were included in significant results. Evolution of these measures

is not (to greater extent) sensitive to different quality of psycho-physiological rest, rather

they might be considered as general characteristics of such rest. Decrease of total power

over the whole cortex implies that overall brain activity gradually diminished during the

resting process.

Inter-session differences are presented in column percentage. The best unidirectional

trends are starting from level of 84 %, i.e. 16 % of cases having direction of trends in

opposite direction. This implies level of credibility for potential use for discrimination

purposes.

The largest changes according shifts from initial to terminal values were approximately

50 % reduction in relative change of absolute power of alpha-1 band across all cortex
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Figure 6.3: Samples of measures at particular cortex locations with the strongest trends during
resting conditions.
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Table 6.1: Evolution characteristics of resting EEG: Measures in particular locations, with

4 criteria: ∆res (residual relative change) derived from averaged curves, means of ∆res

obtained from curves derived from single sessions, percentages of sessions holding the same

trend directions as the averaged trends, and p-values reflecting nonzero trends according

linear regression F-test. Then initial and terminal values, and relative change (terminal

value divided by initial value, in percents) of the linear regression model of averaged curves

during 3-minute evolutions follow. Beginning and end values hold different units (µV 2,

%, dimensionless, or Hz). Measures are listed according to their type and number of

appearances in different cortex locations.

measure location percent. p-val begin end rel. changer. res. change m. r. res. change

criterion I crit. III crit. IV crit. II

power alpha-1 c4p4 -17.99 -1.35 74 <1.E-10 26.61 13.01 49

power alpha-1 p3o1 -15.89 -1.51 84 <1.E-10 15.15 7.97 53

power alpha-1 p4o2 -15.88 -1.43 76 <1.E-10 16.63 8.44 51

power alpha-1 c3p3 -15.55 -1.67 81 <1.E-10 25.29 11.1 44

power alpha-1 f3c3 -12.68 -1.24 74 <1.E-10 14.16 6.88 49

power alpha-1 f4c4 -10.58 -1.00 70 <1.E-10 16.64 8.27 50

relative p. alpha-1 f4c4 -22.28 -1.07 72 <1.E-10 13.36 9.29 70

relative p. alpha-1 p4o2 -17.47 -1.54 74 <1.E-10 13.73 9.76 71

relative p. alpha-1 p3o1 -17.27 -1.37 78 <1.E-10 12.82 9.43 74

relative p. alpha-1 c3p3 -17.04 -1.32 77 <1.E-10 13.99 9.65 69

total power c3p3 -13.92 -1.03 73 <1.E-10 146.76 111.67 76

total power f3c3 -10.2 -1.30 81 <1.E-10 89.72 74.46 83

total power p4o2 -9.03 -0.72 70 <1.E-10 94.46 79.59 84

total power f4c4 -8.12 -0.93 72 <1.E-10 90.33 75.27 83

spectral decay p3o1 -9.37 -1.69 78 <1.E-10 2.88 2.68 93

spectral decay c3p3 -8.06 -1.23 70 <1.E-10 2.96 2.8 95

power beta-2 c3p3 -7.79 -0.87 72 <1.E-10 10.92 9.65 88

power beta-2 c4p4 -5.41 -0.85 74 <1.E-10 9.55 8.74 92

relative p. theta-1 p3o1 13.32 0.92 70 <1.E-10 7.06 8.84 125

relative length f3c3 12.96 1.53 72 <1.E-10 0.18 0.19 106

spectral edge 95 f3c3 8.61 1.20 72 <1.E-10 23.42 24.49 105

power alpha-2 f3c3 -7.3 -0.95 73 <1.E-10 22.46 15.5 69

spectral edge 80 f3c3 5.74 0.97 73 <1.E-10 14.01 14.66 105

relative p. gamma p3o1 5.21 1.35 70 <1.E-10 1.73 2.02 117

regions. These strongest sensitivities displayed by powers in alpha bands may be regarded

as one of basic features of sensori-motorical rest and relaxation. However, according to some

authors increase of alpha power should be present (Lindsley, 1952; Brown, 1970; Foster,

1990). In spite of the fact that during our resting conditions we detected no increase in

appearance of alpha waves during 3 minutes, consistent increase of alpha waves in our

data could be found. Focus on shorter time windows shows that relative power in alpha-2

band in average increased during the first 30 seconds in all cortex regions. In the literature

commonly accepted fact on alpha wave increase during rest and relaxation (Foster, 1990)
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should be rather related to eye closing phenomenon, by which resting is usually initiated,

and to kind of lighter rest: rest with shorter time span and perhaps with closed eyes only

in sitting position.

In the F3C3 location increased spectral edges can be interpreted in a way that relative

power from 0.5 Hz up to approx. 14 and 24 Hz significantly decreased mainly due to

relative alpha-1 (8-10 Hz) decrease. Relative length reflects the same fact in this channel:

increased contribution of higher frequencies which makes trace of EEG signal longer. Two

significant decreases of spectral decay also reflect increased appearance of higher bands to

expense of lower bands.

6.3 Discrimination of two relaxation categories

The goal of this section is to discover even more subtle changes than in 6.2, namely to

find out special EEG features bound to ’successful’ relaxation, expressed on the contrast of

’unsuccessful’ or ’less successful’ relaxation. We referenced objective EEG characteristics

to subjective assessment of relaxation. Recordings were divided into two groups according

their subjective evaluation of general well-being during the relaxation period. For each

subject groups were formed separately; four artefact-free sessions were taken with the

lowest scoring and four with the highest one. Categories denoted as R− and R+ indicate

subjectively less and more successful relaxation. Ideally, choice from 7-point bipolar scale

would look for one subject like [-3,-3,-3,-3] for R− and [3,3,3,3] for R+ category. However, in

real data the lowest and the highest values were not occuring in some subject’s ratings. A

typical sample looked as [-1,-1,0,0] for R− and [1,1,1,1] for R+ category or another sample

as [-2,1,2,2] for R− and [3,3,3,3] for R+ category. From these samples it can be seen, that

the two categories can not be regarded as unsuccessful and successful relaxation, but only

less and more successful relaxation as compared one with the other.

First, for each group averaged graphs were counted (out of 32 cases: 8 persons x 4

sessions) and moving average was applied. From obtained curves it seemed apparent that

many measures in certain locations reflected distinctive evolution for each relaxation class

( curves were not intersecting, evolving apart from each other). Then, in order to find

features capable to distinguish two relaxation categories, parametric and nonparametric

tests were utilized (section 4.6). The first of them was two-sample heteroscedastic student’s

t-test. As only some of our data were normally distributed, for the rest of the data we

used nonparametric Kruskall-Wallis test.

Out of 585 features used, 11 passed t-test with p-value treshold set to 0.05. All of them



6. EEG CHARACTERISTICS OF RELAXATION (PART B) 75

passed Shapiro-Wilk test for normality (p-value > 0.05) for both classes, interpreted as not

violating normality. In addition 15 more features were obtained from Kruskall-Wallis test

(treshold for p-value also 0.05). For these data normality was violated by Shapiro-Wilk

test, p-value < 0.05 at least in one of the categories R− or R+. In the results all three

types of features are represented. On Fig. 6.4 there are presented category-average curves

where two relaxation categories differ by either initial values, trends or terminal values.
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Figure 6.4: Two relaxation categories differ by three types of features related to linear regression:
initial values (beg), trends (rrc), and terminal values (end). Classes R− and R+ indicate subjec-
tively less and more successful relaxation. Samples of category-average curves are presented.

Out of selected features from both tests, 4 had to be excluded due to nonlinear manner

of their averaged curves (coherence gamma PO ∆res and end feature, and coherence delta-

2 PO ∆res and end feature as well). As it may be seen from Fig. 8.13 in appendix C,

they violate linear model more expressively and would rather demand quadratic regression

model. For other selected features linear regression model showed to be acceptable for

application in this part of the thesis.
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9 features resulting from t-test are listed in the fist table of Tab. 6.2 and 13 features

obtained from Kruskall-Wallis test are displayed in the second table of Tab. 6.2. Averaged

curves for these selected features are displayed in appendix C, 8.10 - 8.12.

From the last column of Tab. 6.2 it can be seen that data behavior is not quite uniform

at personal level: A number of persons (out of 8) are displayed, for which shift from personal

average within 1 class to personal average within the second class holds the same direction

as shift of interpersonal averages. At the level of single sessions values from both categories

were much more mixed, there were only a few cases of intra-subject features (within single

person) where classes were separated, i.e. 4 values of one category apart from 4 values of

another category. Overlapping of the categories is to be seen from polygons (appendix C,

8.14-8.17). Polygons are kept separately for both tests, i.e. the first 9 pictures displays

features where both categories did not violate normality and at the rest of the pictures at

least in one class normality was violated.

In the discriminative set of features appeared features based on absolute and relative

delta-1 powers the most frequently (8 out of 22 cases)(Tab. 6.2). Features from the

left hemisphere were presented in the results more frequently, especially left back region

P3O1. It appears that during more agreeable relaxation states the slowest waves of delta-

1 range are less contributed in some cortex areas. Namely in F4C4 and P3O1 regions

where means of inicial and terminal values were separated for both absolute and relative

delta-1 powers. Presenting results from higher frequency ranges, delta-2 power started

from higher values and it was increasing (F4C4), and theta-1 power (P3O1) increased

as well. Higher terminal relative alpha-1 power (F3C3) and higher initial beta-2 relative

power (P3O1) occured. Also decrease of beta-2 relative power(P4O2) happened, together

with higher initial spectral edge 80 and 95 (P3O1), and slight decrease of contribution of

higher frequency bands (C4P4, relative length). Histogram-based entropy indicated slight

decrease of complexity in F4C4. Moreover increase in hemisphere cooperation was detected

in certain cases. Higher terminal coherence in delta-1 range(FC) and higher initial gamma

coherence (FC) indicated higher synchronization of neuronal sources oscillating in these

ranges. Increase in mutual information (CP) signalised improvement of overall cooperation

of hemispheres in central area.

From some graphs in Fifs. 8.10 - 8.12 it may seem, that for ∆res features it is charac-

teristical that for one group it rises while for another it has opposite trends for the most

of the single session (unaveraged) evolutions. In fact, such generalization is not possible

and it is to be seen also from polygons (appendix C, Figs. 8.14 - 8.17). To show some

quantification, for the best oppositely running trends (according to p-val, t-test), power
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Table 6.2: Features with the largest differences between 2 relaxation categories: Upper ta-

ble: List of EEG features obtained from parametric t-test that were able to discern means

of two categories. Lower table: Features obtained from Kruskall-Wallis test for non-normal

data distributions. Features consist of measure, cortex location, and one of the following

characteristics: beginning, end, or relative residual change (rrc). After feature identifica-

tion means for classes R− and R+ (less and more successful relaxation) are presented, and

p-value of particular test. In the last column number of subjects (out of 8) are presented,

for which shift from personal average from one class to personal average from another class

holds the same direction as shift from interpersonal averages.

T-test:

feature mean mean p-val # pers.

R- R+

Kruskal-Wallis test:

feature mean mean p-val # pers.

R- R+

1 coherence gamma fc beg 0.14 0.19 0.009 8

2 power delta-2 f4c4 rrc -0.61 0.56 0.024 7

3 mutual information cp rrc -0.99 0.14 0.033 7

4 power delta-1 c4p4 rrc -0.69 0.35 0.033 6

5 relative p. beta-2 p3o1 beg 9.49 12.04 0.036 6

6 relative p. delta-1 f4c4 beg 22.65 18 0.036 6

7 relative length c4p4 rrc 1.4 -0.14 0.043 8

8 hist. based entropy f4c4 rrc 0.83 -0.19 0.046 7

9 power theta-1 p3o1 rrc -0.39 0.69 0.048 6

1 relative p. delta-1 p3o1 end 22.39 17.15 0.006 7

2 power delta-1 f4c4 beg 22.22 19.92 0.013 6

3 spectral edge 80 p3o1 beg 11.76 13.28 0.013 7

4 power delta-1 p3o1 beg 26.61 17.58 0.015 6

5 power delta-1 p3o1 end 19.05 16.93 0.016 5

6 relative p. delta-1 f4c4 end 21.73 17.53 0.019 7

7 relative p. delta-1 c3p3 end 18.79 13.04 0.022 6

8 relative p. beta-2 p4o2 rrc 0.15 -0.54 0.034 7

9 power delta-2 f4c4 beg 13.04 9.14 0.041 8

10 spectral edge 95 p3o1 beg 19.53 21.47 0.049 7

11 coherence delta-1 fc end 0.28 0.33 0.049 7

12 spectral edge 95 p4o2 rrc 0.82 -0.18 0.050 6

13 relative p. alpha-1 f3c3 end 7.66 9.49 0.050 5

delta-2 F4C4 ∆res , feature holds for less successful relaxation 59% of single cases in de-

creasing direction, and 69% of cases in increasing direction for more successful relaxation;

power delta-1 C4P4 ∆res feature 69% for class R− and 63% for R+.
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6.4 Classification of relaxation level

Almost real-time acquisition of information about relaxation level based on selected

EEG measures would require set of characteristics capturing distinctive and more or less

uniform behaviour in majority of measurements from different subjects and different mea-

surement sessions. In this section preliminary results obtained by procedure of feature

selection indicate candidates for practical discrimination of EEG relaxation level. For re-

searching this problem, we used 2 kinds of classifiers. We took all 585 features and worked

with data matrix of dimension 64 x 585.

Fisher classifier

As the first classification method we used Fisher quadratic classifier for single and multi-

dimensional approach. Multi-dimensional approach was realized for feature selection, with

cases without and with separate testing data. Normality assumption was fulfilled only in

part of feature distributions (in the most significant cases approximately in 2/3). However

this type of classifier is able to perform quite well even when some data are not normally

distributed.

Classification in one dimension was applied only in mode without testing. Chart of the

most suitable candidates is displayed in 6.3. Overall error starts at the level of 31% for

frontal alpha-2 coherence ∆res feature. E1 and E2 are conditional misclassification rates

related to P(R+|R−) and P(R−|R+). Such a high total error rate implies that no single

measure is useful for appropriate discrimination.

In multidimensional classification we were able to reduce error expressively by proper

feature selection. Results for feature selection without testing are displayed in Tab. 6.4. In

each dimension a feature was added to previous features in order to obtain the lowest pos-

sible error. Two cases are presented which differ on direction of searching process. When

one is searching for feature that has to be added to N - 1 preceding features to form N di-

mensional feature vector, there might be candidates with the same total classification error.

Algorithm is supposed to choose one with the smallest one, if there are more candidates

with the smallest error, it depends on particular program, which one is selected. Thus

outcome may differ with different order of candidate features’ testing. Null error reached

in 9-10 dimensions is obtained due to classificator overtraining, as in 10 dimensions space

is filled very sparsely. Under such conditions and when method is applied in mode without

testing, linear separability is fully achieved.
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Table 6.3: Chart of the features with the most distinctive classes according to Fisher

classifier. Feature is marked by measure, location, and one of the following characteris-

tics: beginning (beg), end, or relative residual change (rrc). In the last 3 columns total

classification error and two partial errors are stated.

Fisher classifier

1 dimension

feature E E1 E2

1 coherence alpha-2 fc rrc 0.31 0.47 0.16

2 relative p. theta-1 c3p3 rrc 0.34 0.25 0.44

3 relative p. beta-2 p3o1 beg 0.34 0.16 0.53

4 coherence delta-1 f3c3 end 0.34 0.44 0.25

5 relative p. beta-2 c4p4 rrc 0.36 0.50 0.22

6 power delta-1 c4p4 rrc 0.36 0.19 0.53

7 power delta-2 f4c4 rrc 0.36 0.44 0.28

8 spectral edge 80 f3c3 rrc 0.36 0.25 0.47

9 spectral entropy p4o2 rrc 0.36 0.16 0.56

10 hist. based entropy c4p4 rrc 0.36 0.38 0.34

11 coherence gamma fc rrc 0.36 0.44 0.28

12 relative p. delta-1 p3o1 end 0.36 0.34 0.38

13 relative p. alpha-1 p3o1 end 0.36 0.16 0.56

14 relative p. delta-2 p4o2 rrc 0.38 0.22 0.53

15 relative p. theta-1 f3c3 rrc 0.38 0.44 0.31

16 spectral edge 80 p4o2 rrc 0.38 0.41 0.34

17 spectral edge 90 p4o2 rrc 0.38 0.25 0.50

18 spectral decay p3o1 rrc 0.38 0.16 0.59

19 relative length f4c4 rrc 0.38 0.25 0.50

20 relative p. beta-2 p4o2 beg 0.38 0.41 0.34

21 power beta-2 f4c4 beg 0.38 0.12 0.62

22 spectral entropy f4c4 beg 0.38 0.41 0.34

23 spectral entropy p3o1 beg 0.38 0.41 0.34

24 relative length p4o2 beg 0.38 0.50 0.25

25 coherence delta-1 po beg 0.38 0.62 0.12

26 coherence beta-2 cp beg 0.38 0.22 0.53

27 coherence gamma fc beg 0.38 0.41 0.34

28 relative p. theta-2 f4c4 end 0.38 0.50 0.25

29 spectral edge 50 f4c4 end 0.38 0.53 0.22

30 coherence alpha-1 po end 0.38 0.44 0.31
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Table 6.4: Feature selection according to Fisher classifier. Two cases are presented which

differ due to different order of candidate features’ testing. Feature is marked by measure,

location, and one of the following characteristics: beginning (beg), end, or relative residual

change (rrc). In the last 3 columns total classification error and two partial errors are

stated.

Feature selection

Fisher classifier

only training

case 1 feature E E1 E2

case 2 feature E E1 E2

1 coherence alpha-2 fc rrc 0.31 0.47 0.16

2 relative p. theta-1 c4p4 rrc 0.22 0.31 0.12

3 coherence beta-1 po beg 0.17 0.22 0.12

4 relative p. delta-2 c4p4 rrc 0.11 0.09 0.12

5 relative p. delta-2 p4o2 rrc 0.08 0.09 0.06

6 coherence alpha-1 cp rrc 0.05 0.06 0.03

7 coherence delta-2 fc rrc 0.05 0.03 0.06

8 power beta-2 c3p3 rrc 0.03 0.03 0.03

9 relative p. theta-1 f3c3 rrc 0.02 0.03 0.00

10 relative p. gamma c4p4 rrc 0.00 0.00 0.00

1 coherence alpha-2 fc rrc 0.31 0.47 0.16

2 spectral edge 95 p4o2 rrc 0.22 0.34 0.09

3 relative p. beta-1 f3c3 rrc 0.17 0.25 0.09

4 relative p. theta-2 f4c4 end 0.16 0.19 0.12

5 relative p. delta-2 f4c4 rrc 0.12 0.16 0.09

6 coherence gamma cp end 0.11 0.12 0.09

7 coherence theta-1 cp beg 0.06 0.06 0.06

8 coherence alpha-2 cp end 0.03 0.03 0.03

9 total power f3c3 end 0.00 0.00 0.00

Two trials were executed for feature selection with 10% of data used for testing. The

outcome yielded 12% error for dimension 10, further diminishing to 3-4% reached for

dimension of 17-25 (Tabs. 6.5 - 6.6). If number of trials be expressively higher than used

(100), results of the both trials might be identical. In our case features differ expressively,

so one can not prefer or select a single set for practical purposes. When a portion of data

excluded for testing purposes was increased to 40%, error in one case reached 16% for
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dimension (Tab. 6.7).

While in Tab. 6.4 the first feature naturally has to be the same as the leader of Tab.

6.3, in Tabs. 6.5 - 6.7 the first member is different. While in both cases with 10% of testing

data this feature (coherence alpha-2 FC ∆res) was chosen in front places, unlike in case

with 40% of testing data (6.7).

Neural network classifier

As the second method for discrimination purposes, artificial neural network classifier

was applied. Again with single and multi-dimensional approach, in modes with and without

testing procedure.

Classification in one dimension yielded smaller errors than counterpart - Fisher method.

The most suitable candidates start with overall error of 20% by relative power in beta-2

range in C4P4 with beginning feature (Tab. 6.8).

For feature selection in mode without testing null error was reached already within 4

dimensions (Tab. 6.9) in both performed runs. In this case overtraining of the system was

present, as neural networks are known to be universal approxiamtors. Superior performance

over Fisher discrimination should be understood also due to its to focus on more polygon

regions, while Fisher only to one - around mean of fitted normal distributions. However

these ’islands’ in polygons might disappear if size of the class sets was increased.

Feature selection with 10% of testing data reached total error of 32% for dimension 10,

and further 10% error for D = 21 (Tab. 6.10). In this case Fisher approach performed in

a superior way.

Distributions of feature values are documented by polygons in appendix C, Fig. 8.18-

8.22. Differences in most of the individual features from 1 dimensional classification by

both methods are visible also from behavior of respective averaged curves (appendix C,

Fig. 8.23). In Tab. 6.11 sumarization of the classification results is provided.

In various classification tasks we obtained number of different EEG features. We did

not focus to interpretation of obtained sets of features, as it is not a goal of this section.

Within sets of selected features it is not relevant to interpret features individually. For such

a purpose the section 6.3 has served. Here we demonstrate the ability of discrimination

methods to separate EEG relaxation data and express approximate number of dimension

needed.
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Table 6.5: Feature selection according to Fisher classifier. 10% of data assigned for testing.

Trial 1. Feature is marked by measure, location, and one of the following characteristics:

beginning (beg), end, or relative residual change (rrc). In the last 6 columns total and two

partial classification errors with their standard deviations are stated.

Feature selection

Fisher classifier

with testing

trial1 feature E std(E) E1 std(E1) E2 std(E2)

1 coherence delta-1 fc end 0.31 0.15 0.34 0.25 0.29 0.24

2 relative p. beta-1 f3c3 end 0.27 0.19 0.25 0.25 0.28 0.24

3 power delta-1 f3c3 end 0.23 0.17 0.32 0.28 0.15 0.21

4 relative p. delta-2 c3p3 end 0.19 0.13 0.25 0.24 0.12 0.2

5 power delta-2 f3c3 end 0.14 0.14 0.17 0.22 0.12 0.19

6 coherence alpha-2 fc rrc 0.14 0.14 0.13 0.18 0.16 0.21

7 total power f3c3 end 0.13 0.13 0.1 0.16 0.17 0.22

8 spectral edge 50 f4c4 end 0.14 0.14 0.14 0.19 0.15 0.22

9 power beta-2 p4o2 end 0.12 0.13 0.08 0.16 0.16 0.21

10 coherence beta-1 po beg 0.12 0.13 0.08 0.16 0.16 0.22

11 relative p. theta-2 f4c4 beg 0.11 0.12 0.1 0.17 0.12 0.18

12 relative p. beta-2 c3p3 rrc 0.1 0.14 0.06 0.16 0.14 0.21

13 coherence theta-2 cp end 0.11 0.13 0.07 0.15 0.15 0.2

14 relative p. beta-1 p3o1 beg 0.08 0.12 0.06 0.14 0.1 0.16

15 relative p. theta-2 c4p4 beg 0.06 0.11 0.04 0.12 0.08 0.14

16 power beta-1 f4c4 beg 0.06 0.1 0.05 0.12 0.07 0.14

17 relative p. alpha-1 f3c3 beg 0.04 0.1 0.05 0.12 0.04 0.12

18 relative p. alpha-1 c4p4 end 0.06 0.11 0.07 0.15 0.04 0.11

19 coherence theta-1 po beg 0.05 0.11 0.06 0.17 0.04 0.12

20 hist. based entropy c3p3 end 0.06 0.1 0.08 0.16 0.04 0.12

21 spectral edge 80 c3p3 rrc 0.08 0.11 0.07 0.14 0.08 0.17

22 power beta-2 p3o1 end 0.07 0.11 0.06 0.13 0.09 0.19

23 hist. based entropy f3c3 rrc 0.08 0.11 0.06 0.15 0.1 0.18

24 spectral entropy c4p4 rrc 0.06 0.1 0.05 0.15 0.07 0.17

25 power delta-2 p4o2 rrc 0.05 0.09 0.06 0.15 0.04 0.12

26 power delta-1 p4o2 rrc 0.07 0.11 0.03 0.11 0.1 0.2

27 power alpha-2 p3o1 beg 0.04 0.1 0.03 0.12 0.06 0.15

28 relative p. theta-2 p4o2 end 0.08 0.14 0.05 0.16 0.12 0.26
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Table 6.6: Feature selection according to Fisher classifier. 10% of data assigned for testing.

Trial 2. Feature is marked by measure, location, and one of the following characteristics:

beginning (beg), end, or relative residual change (rrc). In the last 6 columns total and two

partial classification errors with their standard deviations are stated.

Feature selection

Fisher classifier

with testing

trial 2 feature E std(E) E1 std(E1) E2 std(E2)

1 coherence delta-1 fc end 0.33 0.14 0.4 0.25 0.26 0.24

2 relative p. beta-1 f3c3 end 0.27 0.19 0.25 0.23 0.3 0.28

3 relative p. beta-2 p4o2 end 0.24 0.2 0.28 0.28 0.19 0.26

4 coherence alpha-2 fc rrc 0.24 0.16 0.28 0.26 0.21 0.24

5 relative p. theta-1 f3c3 rrc 0.19 0.16 0.18 0.25 0.21 0.2

6 power alpha-1 f4c4 beg 0.17 0.16 0.17 0.21 0.18 0.24

7 relative p. alpha-2 f4c4 end 0.16 0.17 0.17 0.22 0.16 0.24

8 spectral edge 95 c3p3 end 0.17 0.15 0.13 0.21 0.21 0.2

9 relative p. theta-1 p3o1 end 0.14 0.13 0.12 0.17 0.17 0.22

10 relative p. alpha-1 f3c3 end 0.13 0.13 0.09 0.16 0.17 0.23

11 coherence gamma po rrc 0.15 0.13 0.12 0.2 0.18 0.22

12 relative p. alpha-2 p4o2 beg 0.13 0.13 0.08 0.17 0.17 0.2

13 coherence delta-2 po rrc 0.13 0.14 0.12 0.19 0.13 0.21

14 relative p. beta-1 c3p3 beg 0.1 0.13 0.12 0.2 0.09 0.15

15 power alpha-1 f3c3 rrc 0.1 0.11 0.11 0.18 0.08 0.15

16 coherence theta-1 fc end 0.09 0.13 0.12 0.2 0.06 0.14

17 relative p. delta-1 p4o2 end 0.1 0.11 0.08 0.14 0.11 0.18

18 coherence beta-2 cp rrc 0.09 0.13 0.1 0.17 0.08 0.17

19 power alpha-2 c4p4 beg 0.09 0.11 0.11 0.17 0.07 0.15

20 coherence delta-2 cp beg 0.08 0.11 0.1 0.19 0.06 0.13

21 power delta-2 f4c4 rrc 0.06 0.1 0.04 0.11 0.07 0.16

22 spectral entropy c3p3 end 0.04 0.09 0.06 0.15 0.03 0.09

23 relative p. delta-2 p3o1 beg 0.04 0.08 0.06 0.15 0.03 0.11

24 spectral entropy c3p3 beg 0.04 0.09 0.06 0.15 0.03 0.11

25 relative p. delta-2 f4c4 rrc 0.03 0.08 0.05 0.13 0.02 0.09

26 coherence gamma cp rrc 0.05 0.09 0.03 0.11 0.06 0.15

27 relative p. gamma f4c4 rrc 0.03 0.08 0.04 0.14 0.02 0.07

28 power theta-2 c4p4 beg 0.07 0.12 0.04 0.13 0.09 0.21
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Table 6.7: Feature selection according to Fisher classifier. 40% of data assigned for testing.

Feature is marked by measure, location, and one of the following characteristics: beginning

(beg), end, or relative residual change (rrc). In the last 6 columns total and two partial

classification errors with their standard deviations are stated.

Feature selection

Fisher classifier

with testing

feature E std(E) E1 std(E1) E2 std(E2)

1 coherence gamma fc beg 0.36 0.06 0.37 0.13 0.35 0.13

2 relative p. delta-1 c3p3 end 0.28 0.07 0.32 0.11 0.24 0.11

3 power beta-2 p4o2 end 0.24 0.08 0.24 0.13 0.24 0.13

4 coherence beta-2 cp rrc 0.21 0.06 0.18 0.11 0.24 0.12

5 spectral decay p4o2 rrc 0.2 0.06 0.17 0.11 0.22 0.12

6 mutual information cp rrc 0.17 0.06 0.15 0.1 0.2 0.13

7 relative p. delta-1 c4p4 rrc 0.17 0.05 0.15 0.1 0.19 0.12

8 relative p. gamma f4c4 rrc 0.16 0.06 0.15 0.12 0.17 0.12

9 spectral decay p4o2 end 0.16 0.06 0.13 0.1 0.18 0.14

10 coherence delta-2 c3p3 end 0.17 0.07 0.17 0.12 0.18 0.13

11 relative p. theta-2 p3o1 rrc 0.18 0.07 0.15 0.12 0.22 0.14

12 relative p. theta-2 c4p4 rrc 0.19 0.08 0.17 0.15 0.21 0.14

13 power gamma c4p4 beg 0.21 0.08 0.19 0.15 0.23 0.17

14 relative p. delta-1 p4o2 beg 0.21 0.09 0.17 0.15 0.25 0.19

15 power theta-2 p4o2 end 0.22 0.08 0.16 0.14 0.28 0.21

16 power delta-1 f4c4 rrc 0.25 0.1 0.21 0.18 0.28 0.21

17 shannon entropy c3p3 beg 0.27 0.09 0.28 0.22 0.25 0.2

18 relative p. beta-2 p3o1 end 0.33 0.13 0.27 0.28 0.39 0.33

One-dimensional classification approach is not useful for practical purposes, as errors

are too high. When we focus our view to Fisher type of discriminant analysis, and restrict

ourselves up to 10 dimensions, from 3 cases of feature selection with testing, promising

results yielded error 12 - 16 %. With permission up to 25 dimensions, error of 3 - 4 % was

achieved (for training set cardinality equaled to 0.9). Obtained feature vectors should be

considered as preliminary, although these particular vectors might be tested on any other

EEG relaxation data. There might exist a number of feature vectors of acceptable (not

too high) dimension N with similar and relatively sufficiently low classification errors.
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Table 6.8: Chart of the features with the most distinctive classes according to classification

by neural networks. Feature is marked by measure, location, and one of the following

characteristics: beginning (beg), end, or relative residual change (rrc). In the last 3 columns

total classification error and two partial errors are stated.

Neural networks

1 dimension

feature E E1 E2

1 relative p. beta-2 c4p4 beg 0.20 0.06 0.34

2 power theta-2 f4c4 rrc 0.23 0.28 0.19

3 power delta-1 f3c3 beg 0.23 0.16 0.31

4 coherence delta-1 f3c3 end 0.23 0.25 0.22

5 relative p. theta-1 c3p3 rrc 0.25 0.25 0.25

6 relative p. gamma p3o1 rrc 0.25 0.28 0.22

7 relative p. delta-1 c4p4 rrc 0.27 0.09 0.44

8 relative p. theta-2 c3p3 rrc 0.27 0.34 0.19

9 power delta-1 p3o1 rrc 0.27 0.34 0.19

10 hist. based entropy f4c4 rrc 0.27 0.34 0.19

11 coherence delta-2 f3c3 rrc 0.27 0.19 0.34

12 coherence alpha-2 f3c3 rrc 0.27 0.41 0.13

13 spectral edge 50 f3c3 beg 0.27 0.38 0.16

14 spectral entropy p4o2 beg 0.27 0.25 0.28

15 power alpha-1 p4o2 end 0.27 0.28 0.25

16 spectral decay c3p3 end 0.27 0.28 0.25

17 mutual information fc end 0.27 0.38 0.16

18 relative p. delta-1 f4c4 rrc 0.28 0.16 0.41

19 power delta-1 p4o2 rrc 0.28 0.03 0.53

20 power delta-2 p3o1 rrc 0.28 0.34 0.22

21 power beta-2 p4o2 rrc 0.28 0.06 0.50

22 hist. based entropy c4p4 rrc 0.28 0.19 0.38

23 relative length c4p4 rrc 0.28 0.19 0.38

24 coherence delta-2 cp rrc 0.28 0.28 0.28

25 coherence alpha-1 fc rrc 0.28 0.34 0.22

26 coherence beta-2 po rrc 0.28 0.53 0.03

27 relative p. alpha-1 f3c3 beg 0.28 0.28 0.28

28 relative p. beta-1 c3p3 beg 0.28 0.25 0.31

29 relative p. beta-2 p4o2 beg 0.28 0.19 0.38

30 power beta-2 f4c4 beg 0.28 0.41 0.16

31 coherence theta-1 cp beg 0.28 0.22 0.34

32 relative p. delta-1 p3o1 end 0.28 0.38 0.19

33 relative p. gamma c3p3 end 0.28 0.09 0.47

34 coherence alpha-1 po end 0.28 0.41 0.16
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Table 6.9: Feature selection according to classification by neural networks. Two cases

are presented which differ due to neural network’s inherent variations in learning process.

Feature is marked by measure, location, and one of the following characteristics: beginning

(beg), end, or relative residual change (rrc). In the last 3 columns total classification error

and two partial errors are stated.

Feature selection

Neural networks

only training

trial 1 feature E E1 E2

trial 2 feature E E1 E2

1 coherence delta-1 po beg 0.17 0.19 0.16

2 spectral decay c3p3 rrc 0.03 0 0.06

3 relative p. gamma c4p4 rrc 0.02 0.03 0

4 power theta-2 c3p3 rrc 0 0 0

1 coherence delta-1 fc end 0.22 0.19 0.25

2 relative p. theta-2 f3c3 rrc 0.06 0.06 0.06

3 relative p. delta-1 c4p4 rrc 0.02 0 0.03

4 relative p. theta-2 p3o1 beg 0 0 0

From sections 6.3 and 6.4 we obtained quite a lot of different features. On the contrary

to what one could expect, results from t-test (section 6.3) and one-dimensional Fisher

classifier were not alike. In spite of the fact that both of them use estimates of normal

distributions, quantification methods are different with ability to prefer different qualities

of their distributions. At first, we used for classification only the strongest results from

the section 6.3. But later we realized that t-test and Fisher classifier might not prefer the

same shapes in polygons. Probably with increasing number of data in classes, feature dis-

tributions would become smoother and the outcomes would not differ so extensively. Many

features yielded similar significance in t-test and in total error in classification, thus chang-

ing of their order is plausible. However we may also emphasize features that performed

well in both tasks (discernment of population mean from the section 6.3 and classification

task from the section 6.4). From t-test and one dimensional Fisher classification these

were delta-2 power F4C4 ∆res , delta-1 power C4P4 ∆res , and relative beta-2 power P3O1

beginning. From Kruskall-Wallis test and one dimensional Fisher classification these were
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Table 6.10: Feature selection according to classification by neural networks. 10% of data

assigned for testing. Feature is marked by measure, location, and one of the following

characteristics: beginning (beg), end, or relative residual change (rrc). In the last 6 columns

total and two partial classification errors with their standard deviations are stated.

Feature selection

Neural networks

with testing

feature E std(E) E1 std(E1) E2 std(E2)

1 power alpha-2 f4c4 beg 0.22 0.19 0.33 0.27 0.1 0.16

2 relative p. gamma c3p3 beg 0.22 0.14 0.17 0.18 0.27 0.31

3 spectral edge 95 c4p4 rrc 0.2 0.19 0.3 0.29 0.1 0.16

4 relative p. gamma f3c3 end 0.27 0.2 0.2 0.28 0.33 0.22

5 spectral entropy f4c4 rrc 0.28 0.26 0.27 0.26 0.3 0.33

6 power gamma p3o1 rrc 0.27 0.14 0.27 0.21 0.27 0.21

7 relative p. theta-2 p4o2 beg 0.25 0.12 0.23 0.16 0.27 0.21

8 spectral entropy f4c4 end 0.27 0.18 0.27 0.31 0.27 0.21

9 relative p. gamma c4p4 beg 0.3 0.17 0.27 0.26 0.33 0.27

10 relative p. theta-1 p3o1 beg 0.32 0.18 0.2 0.23 0.43 0.22

11 power theta-1 p4o2 beg 0.27 0.22 0.2 0.23 0.33 0.35

12 relative p. alpha-1 f3c3 rrc 0.18 0.17 0.13 0.17 0.23 0.27

13 lin. correlation cp beg 0.18 0.15 0.1 0.16 0.27 0.26

14 coherence beta-1 po rrc 0.2 0.11 0.2 0.17 0.2 0.17

15 relative p. beta-1 f3c3 end 0.18 0.15 0.2 0.23 0.17 0.28

16 coherecne delta-1 po end 0.18 0.12 0.17 0.18 0.2 0.17

17 power theta-1 f3c3 beg 0.18 0.12 0.2 0.17 0.17 0.24

18 power beta-1 p3o1 end 0.18 0.18 0.23 0.22 0.13 0.17

19 spectral edge 50 p4o2 beg 0.13 0.13 0.17 0.18 0.1 0.16

20 power gamma c3p3 rrc 0.13 0.11 0.17 0.24 0.1 0.16

21 coherecne delta-2 po beg 0.1 0.12 0.1 0.16 0.1 0.16

relative delta-1 P3O1 end and coherence delta-1 FC end feature.
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Table 6.11: Sumarization of the classification results. Total errors for different classifi-

cation tasks in particular dimensions. 1D: single feature, FS: feature selection, training

cardinality: training data set cardinality.

Dimension Fisher classifier Neural networks

1D FS 1D FS

training cardinality: train.card.:

0.9 0.6 0.9

trail 1 trial 2

1 0.31 0.2

3 0.2

8 0.16

10 0.12 0.13

17 0.04

21 0.1

25 0.03

6.5 Discussion on relaxation

Compared to other imaging methods like fMRI, PET, it is difficult to formulate any

physiological interpretation of captured processes. On the other hand fNMR or PET tech-

niques, which are able to localize certain physiological activity are much more expensive

methods. In case we used more dense montage, amount of data would increase, however

question would be, weather it would have brought more useful information. Still we ob-

tained a large number of different resulting measures at different cortex locations. From

them simple interpretation and generalization would be desirable. Unfortunately in area of

psychophysiology there is often no straightforward way to interpret obtained results in the

frame of elementary physiological processes, like e.g. decrease in total power interpreted as

attenuation of cortex activity. Already shift to lower frequency bands or decrease in signal

complexity may be interpreted in different ways, both deactivation or activation of cortex

activity, depending on the circumstances. There also rises another question, whether there

should be highlighted measures with topologically broader distinctive performance, or one

should prefer selecting only those measures performing the best at single cortex locations.

Concerning physiological correlates, generally one could look for certain locations that

show distinct behavior reflected in evolution of measures and try to locate relevant cor-

tex functioning centers according to their anatomical displacement. An opposite strategy
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would be to look for topologically widest changes that can be detected more easily.

Concerning practical application of knowledge regarding detection of resting states,

physiological mechanisms of arousal and attention are currently studied for scientific, clin-

ical and technical purposes. Our study may belong to broader topics from which one of

the most actual areas is for example reliable interactions between human subject and ar-

tificial system (e.g. of transportation nature) and in other situations where human factor

is directly involved, and undesirable change of operator’s state may have severe conse-

quences. Topic of sensori-motorical rest may be regarded from above-mentioned frame, as

it is supposed that under resting conditions change of arousal and decrease of attention

and reactivity may occur.

During our resting conditions (3-minute session in darkened room in lying position

with eyes closed) we assume that subjects started from unrelaxed or less relaxed state

and had an opportunity to achieve kind of release of greater extent than at the begin-

ning of 3- minute session. Neurophysiological indicators for a state of sensori-motorical

and mental rest are usually considered to be the increase of alpha and theta frequencies

(Lindsley, 1952; Brown, 1970; Foster, 1990) and inter-hemispheric synchronization, espe-

cially frontal alpha coherence (Travis, 2001). However, in our study we detected significant

decrease of alpha-1 powers (8- 10 Hz). Both absolute and relative alpha-2 power decreased

according to averaged curves, but not significantly according to our criteria set in the

section 6.3. One could expect, that at least neighbouring lower intervals might increase.

Actually we recognized one significant relative theta-1 power increase (backward left loca-

tion) while other relative powers in delta-2, theta-1, and theta-2 ranges (2-8 Hz) increased

in average (insignificantly) in all cortex regions. Further average increases in overall hemi-

sphere synchronization (both linear correlation and mutual information) were obtained

only in backward location.

In both sections 6.3 and 6.4 three types of features (∆res , beginning, end) were analyzed

according to subjective answer to the task ”Assess a level of your relief accomplished during

relaxation period.” One may differ between subjective feelings at the end of 3-minute

relaxation period and subjective feeling during the whole 3 min period, where also initial

subjective state could be accounted. For example more successful relaxation was taken

also when it already started from subjectively better starting position. As participants

were not suggested to distinguish between these two types of assessment, probably some

merged these two questions together. Suggestion for modification would be to repeat

task in the sections 6.3 and 6.4 with new classes organized according to subtraction of

subjective feeling after relaxation (in our forms achieved during relaxation) and before

relaxation 8.2. With classes formed in this way we would exclude class elements reflecting
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situation ”positive start - positive end” from our interest. Rather we would be focus on

R+ class build from elements reflecting ”poor beginning - positive end”. Such recognition

task would be directed towards physiological correlates of processes worth to train. Worth

for building or increasing voluntary ability to evoke such beneficial changes. However, with

such a regrouping, we headed a problem of having not enough variety of these subtracted

values necessary for forming two distinct and numerous groups, as pairs of subjective feeling

were often similar. By this regrouping of the classes we would eliminate one ”deviation”

in subjective assessment, illustrated in the following example. Let us have 2 different

relaxation sessions. Case 1: assessment of subjective feeling before: 2, feeling after (in this

meaning not applied in our protocol): 2. Case 2: assessment of subjective feeling before:

- 2, feeling after: 2. Now, subjective effectiveness in the second case was superior, thus

enthusiastic subject in the second case could evaluate state accomplished during relaxation

by value 3, while in the first case the same state by 1.

In task from the section 6.3 three groups of features are presented: Beginnings can

discriminate state of the subject without waiting to measures’ development. Direction of

trend represented by ∆res reflects evolution. End features are less meaningful compared

to beginnings as they reflect no distinct end point for resting, just end of the recording

period.

In the section 6.4 we have shown that in principle discrimination of two relaxation states

from EEG signal is possible. However, results should be considered with caution as pre-

liminary mainly from two following reasons. Small amount of data (32 in each group) and

referencing only to subjective assessments of participants. In principle, the latter cannot be

in area of psychophysiology fully replaced. It can be improved by more sophisticated efforts,

for example by referencing to more physiological outcomes (like data from cardio-vascular,

respiratory, and muscular systems, brain imagines, components secreted to blood). Unfor-

tunately literature on these topics is more or less missing, or related references are focused

to in some way similar phenomena (e.g. meditation). Herein solved discrimination and

classification tasks could contribute to increased differentiation by combination with other

physiological indicators mentioned above. Such combination could result in more expres-

sive results; increased significance of difference for classes and in diminished classification

error.

Our results give appropriate starting point for potential practical applications. Natu-

rally, such step should be preceded by larger data acquisition with consecutive discrimi-

nation. For more realistic classification approach, first of all, expressively higher number

of input data should be used, and then number of trials in feature selection with testing

should be massively increased to obtain more representative samples of features. Then also
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tasks with lower training set cardinality would be reasonable to use (e.g. 0.6).

Finally, one of the main questions of this part of the thesis could be laid and answered.

The question is of a high psycho-physiological value: What is relaxation? Here we are

able to answer it in the frame of EEG characteristics. Relaxation is sensori-motorical rest

characterized by EEG trends obtained in the section 6.2 that differs from not so successful

relaxation by features captured in the section 6.3. And practically, but not with naked eye

or hand, it can be discriminated from not so successful relaxation by classification methods

from the section 6.4.

In the section 6.3, majority of out-coming measures’ evolutions from t-test display an

interesting behavior: Convergence of both curves into common level, like if some correction

of both states was performed to achieve certain equilibrium for optimal performance. In

such case sessions from both categories should end up with indiscernable subjective results.

This may point to the problem already mentioned above in this discussion, namely whether

subjects were able to discern between terminal and initial subjective states while processing

task formulated as ”Assess a level of your relief accomplished during 3-minute relaxation

period”. This task was meant to evaluate ending state without interference of preceding

evolving subjective states.

From additionally modified and developed measures both relative length and spectral

decay showed to be useful in characterizing of resting process, as they appeared among

the most sensitive trends 6.1. The rise of relative length correlates with fall of spectral

decay. Both changes might be interpreted in a way, that higher frequencies increased their

appearance in overall EEG activity. For discrimination of relaxation states relative length

occurred in one cortex location for discerning opposite (averaged) trends.

General question is whether to prefer absolute or relative power bands. From the

point of view of stronger significance we may always choose from these pairs those ones

holding more significant properties. The choice may be connected to behavior of total

power. Illustrating for trends, when total power decreases, decrease of alpha power would

be stronger than decrease, if any, of relative alpha powers. But, for example, relative theta

powers may display stronger rising trends, because absolute theta powers are components

of decreasing total power. From physiological point of view remaining question is whether

changes in absolute or in relative powers reflect better physiological character of local

cortex activity.

Established ∆res showed to be more practical measure for rating sensitivity than p-

values of linear regression F-test. Another final remark, while attempting for relaxation,

subjects may suffer a bit by unpleasant electrode cap montage.



7

Summarization of results and

contribution to praxis

7.1 Summarizing results

In this section we briefly summarize the novel results of the study to make the contri-

bution of the thesis more evident. In this theses contributions to two exploratory research

areas reflecting brain functioning were addressed:

- Impact of repetitive audio-visual stimulation (AVS) on human cortex activity

- Exploration of EEG characteristics during psychosomatic relaxation

In the context of the two tasks performance and sensitivity of untraditional EEG mea-

sures during subtle physiological changes was compared to traditional ones.

Main items of the contribution of this thesis are listed bellow.

• Revelation of unique EEG characteristics during brain AVS training.

In the first part of the presented work we have demonstrated that repetitive use of AVS

affects not only direct and transient features of EEG, but alters EEG characteristics also

on long-term time scale. In order to identify direct, transient, as well as long-term changes

in human cortex under repetitive impact of AVS various linear and nonlinear measures

were estimated.

• Impact of AVS directly during the stimulation in different frequency bands,

92
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and long-term evolution of this impact (section 5.2).

Entrainment of brain waves was evaluated as ratio of relative powers in narrow fre-

quency bands comprising stimulation frequencies (17, 4, 2, and 10 Hz in separate time

windows) to respective relative powers obtained from prestimulation sessions. Such direct

reaction to AVS was well developed in majority of stimulation sessions. Entrainment reac-

tion spread from occipital areas to other cortex regions. In frontal region average reaction

was attenuated from 4 to 7-times. The highest increase of average relative band power,

30 times, occured in the right occipital location during 17 Hz stimulation. Single session

maximum occured in left backward region during 17 Hz stimulation as well, reaching 217-

times higher relative power compared to prestimulation period. The number of sessions

with at least 1.5-time increase of respective relative power was registered from almost full

number of cases (95-100%) in occipital regions to 46-85% in frontal regions. Total power

during stimulation increased in majority of cases, with the highest increases of 1.6-times

during 2 and 4 Hz stimulation in frontal and backward cortex locations. Certain trends

in entrainment during the whole experiment period were observed, mainly increases for 4

and 2 Hz stimulation in central locations.

• Transient effects of AVS (a few minutes after AVS influence) and their time

progress (section 5.3).

Transient effects were understood as differences in individual measures during 3-minute

post stimulation period in respect to 3-minute prestimulation period. Wilcoxon matched-

paired test was chosen to quantify differences between data recorded after and before

stimulation.

The strongest changes in spectral domain occured in higher frequency bands 12 - 45

Hz across all cortex regions. Absolute power from this interval decreased after stimulation

in comparison with period prior to stimulation (for collection of these results see appendix

B, Fig. 8.4 and 8.5).

From EEG complexity measures spectral entropy decreased in P3O1, Shannon entropy

displayed decrease in C3P3, and correlation dimension increase in C4P4 location.

Positive shifts were obtained for interdependencies evaluated synchronization between

left and right hemisphere in both lower and higher frequency ranges. Overall interhemi-

spheric cooperation slightly improved in wider frequency spectrum, inspite of the fact that

both linear correlation and mutual information did not shift significantly.

Power attenuation in beta range may be understood through the fact that during post

AVS resting session subjects were already lying for 25 minutes in darkened room with

eyes closed. Their resting state differed from their normal conscious brain state more than
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that during resting session prior to AVS. Thus their conscious was altered from wake one

connected with activity in beta domain.

Trends in transient effects:

From values of each individual measure obtained after AVS values obtained prior to

stimulation were subtracted. Trends during the whole training process were tested by

significance of nonzero slope in linear regression model.

Higher number of significant trends was found within relative band powers: Increases

in theta-1 and theta-2 bands, and increases in beta-1 and beta-2 in frontal channels (for

collection of these results see appendix B, Fig. 8.6 and 8.7).

Spectral entropy increased on the right side of the cortex and spectral decay increased

in frontal right area. From other complexity characteristics we found that Shannon en-

tropy significantly decreased in F4C4 region, which was opposed by increase of correlation

dimension in the same area.

Connectivity between hemispheres in parieto-occipital region strengthen gradually, as

both interdependency measures linear correlation coefficient and mutual information in-

creased significantly. Increases were obtained for coherence in alpha-1 band in central

regions, and beta-1 coherence in central and parieto-occipital areas.

In summary, mainly positive development of relative powers in 4-8 Hz and 12-30 Hz

range, and in various coherences were found. These results may indicate that subjects, as

the training progressed, were able to utilize the sessions more effectively in some respect.

• Long-term effects of AVS from the perspective of the whole AVS training

(section 5.4).

From long-term perspective evolution of examined measures during the whole experi-

ment period was analyzed from EEG data with respect to the significance of their linear

regression. Increased power in lower frequency bands (4-10Hz) in frontal and central cortex

locations was observed (for collection of these results see appendix B, Fig. 8.8 and 8.9). To-

tal power (0.5-45 Hz) increased in the right central region. Moreover, its dynamics during

the whole course of the experiment displayed a shift from the left to the right hemisphere.

Other spectral trends were: left central decrease of delta-1 power, left frontal and central

increase of alpha-2, and central increase of beta-2 power. Spectral edge 95 decreased in

occipital locations.

Spectral entropy as a linear complexity measure significantly increased in central left

area. Spectral decay increased in all monitored cortex areas. Relative length showed to be

sensitive in some locations, as it increased in C3P3 and decreased in P3O1 area. Increase
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in both histogram-based entropy estimators was obtained in F3C3 location. Decreasing

trends occured in correlation dimension for frontal and central locations.

Both linear correlation coefficient and mutual information significantly decreased in

parieto-occipital parts. Inter-hemispheric coherence in alpha-1 band displayed increase

between frontal parts, while theta-1 and theta-2 coherences displayed opposite trends in

this region.

Our results show that regular training with AVS does induce changes in the cortex

functioning, such as those commonly reported to be features specific to relaxation or altered

states of consciousness. It seems that AVS training could be more effective in inducing

long-continuint changes of EEG than regular 20 minute listening to relaxation music.

• Investigation of efficiency of linear and nonlinear measures for EEG analysis in

the context of long-term AVS (section 5.4).

As a contribution to linear characteristics, we found significant trends in the behaviour

of some non-linear measures. Changes in mutual information exactly follow changes in

linear correlation. Actually, mutual information appeared to be more sensitive than linear

correlation.

However, trends of spectral entropy do not match changes in nonlinear complexity

measures. This may be example of a case when nonlinear complexity measures might

represent new possible indicators of dynamical changes of resting EEG, or these changes

might be indexed better by a combination of linear and non-linear EEG variables.

Another relationship between non-linear and linear measures may be given by possible

connection between the spectral features of data and dimensional estimates. It is possible

that the decreasing trends of CD and increasing trend of theta and alpha band powers are

reflections of the same spectral changes of EEG signals.

• Design of modified and new EEG measures.

Spectral decay showed to be one of the most sensitive measures able to detect changes

at all monitored cortex regions during long-term AVS. Relative length, newly proposed

measure of complexity of EEG signal, belonged also to sensitive measures in some cortex

locations (sections 4.4 and 5.4).

• Testing the effects of popular AVS device on the subjective states of partici-

pants.

Direct effect (section 5.2): Quite often participants reported different pleasant and

colorful visions during certain stages of the stimulation session. Sometimes personal remi-
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niscences surfaced. In one subject unbearable body feeling arose, so that he considered to

withdraw from the experiment.

Transient effect (section 5.3): Subjective measure evaluating general release accom-

plished during the second relaxation period indicated subjectively better relaxation perfor-

mance compared to the first resting interval. After half of an hour of resting participants

felt significantly better, which was reflected in a rise of subjective evaluation of general

release during the second relaxation period compared to the first relaxation period.

Long-term effect (section 5.4): General well-being before each day relaxation period (an-

swering question ”How do you currently feel?”) displayed no significant trend. However,

subjective measure which evaluated general release accomplished during the relaxation

interval (”Assess a level of your relief accomplished during the prestimulation period.”)

showed significantly increasing trend towards better performance. Both subjective mea-

sures were rated on 7-point bipolar scale. In spite of the fact that from subjective results

certain progress of relaxing effects is apparent, spontaneous relaxation abilities evaluated

at the end of the whole experiment were perceived as unchanged.

• Description of EEG characteristics during human psychosomatic relaxation.

In the second part of the thesis firstly EEG characteristics of rest were revealed in a form

of regression trends. Then more successful relaxation was discerned from less successful

relaxation by set of EEG features.

• Regression trends of EEG measures during sensori- motorical rest (section 6.2).

On the contrary to general expectations, during resting conditions - 3-minute session

in darkened room in lying position with eyes closed - both alpha-1 and relative alpha-1

powers were decreasing. Decrease of total power over the whole cortex implied gradual

diminishing of overall brain activity during the resting process. EEG complexity expressed

by spectral decay decreased in central and occipital region of the left hemisphere.

• EEG based discrimination of two relaxation categories (section 6.3).

Categories were formed according to subjective assessments of participants. Set of

EEG features was selected according their capability to recognize more from less successful

relaxation. Quite a few features pointed to lower contribution of the slowest waves (delta-1

range) in some cortex areas as a distinctive characteristic of more successful relaxation.

• Classification of the relaxation level (section 6.4).
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Feature selection technique was applied for reduction of a set of EEG features in order

to propose practical tool for discrimination of two relaxation classes. Within this technique

methods of discriminant analysis were employed in a form of Fisher classifier and artificial

neural networks. Under restriction to ten dimension, results of feature selection yielded

total classification error 12 - 16 %. With permission up to 25 dimension, error of 3 - 4

% was achieved for training set cardinality 0.9. The promising results of this exploratory

study might progress into EEG descriptors of human relaxation abilities with possible

application in clinical, pharmacological and self-regulative areas.

• Development of complex Octave/Matlab software implementation for EEG process-

ing and analysis.

Complex programs include flexible manipulation with EEG data, digital filtering, rou-

tines for calculation of spectral, complexity, and interdependency measures, evolutions of

these measures in subsequent time windows and feature selection algorithms with Fisher

and artificial neural network classification. Produced software should be freely available

on our web site.

• For EEG analysis we combined a wider range of different measures, traditional

spectral and contemporary nonlinear ones. In some cases nonlinear characteristics were

sensitive to subtle physiological changes and might be added to descriptors of addressed

processes. From additionally modified and developed measures both relative length and

spectral decay showed to be useful for characterizing process of long-term AVS, sensorimo-

torical rest, and for discernment of successful relaxation.

Author of this thesis contributed substantially to the following parts of this research

project:

- Design of experimental setup for laboratory brain training AVS experiment.

- Design of methodology on EEG data processing, analyzing, displaying and evaluating.

- Laboratory management and operation.

- Data analyzes and programming of complex Octave/Matlab codes.

7.2 Contribution to praxis

• We conducted basic research in the field of AVS. We showed that brain wave entrain-

ment is well developed in distant cortex regions and that AVS training leads to transient
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and long-term effects. To our knowledge, this is the first study dealing with EEG charac-

teristics under repetitive AVS stimulation during a longer time period. Contribution of this

thesis is in better understanding and enhancement of AVS phenomena. This ought to help

in designing further clinical studies possibly resulting in establishment of new diagnostic

and treatment tools for variety of psychological and neurological disorders. Recommenda-

tion for AVS training is, that long-term AVS training may increase brain wave entrainment

and enhance relaxation abilities.

• New method for investigating rest and relaxation status from EEG was developed

and tested. We have built a set of different criteria for assessment of trends in EEG

measures, have chosen appropriate types of EEG features, and appropriate length of data

recordings.

• We determined new EEG characteristics of general rest. Moreover we provide EEG

features of more successful relaxation. Finally, our promising classification results might

be developed into EEG descriptors for recognition of human relaxation status. Potential

benefit of obtained EEG characteristics is in variety of areas, e.g. sleep medicine, pharmacy,

human artificial system interaction, neurofeedback training and self-regulation.

• We documented that both linear (spectral) and nonlinear approaches for EEG anal-

ysis are useful for utilization at cortex processes under studied conditions. In some cases

nonlinear characteristics were sensitive to subtle physiological changes and were suitable

for addition to descriptors of addressed processes. From modified and newly developed

measures both measure of relative length and spectral decay showed to be useful for char-

acterizing processes of long-term AVS, sensorimotorical rest, and for discernment of suc-

cessful relaxation. Therefore we recommend application of these nontraditional measures

in EEG analysis.

• Freely available software was coded in Matlab environment. Complex programs

include flexible manipulation with EEG data, digital filtering, routines for calculation of

spectral, complexity, and interdependency measures; computation of measures’ evolutions

in subsequent time windows; and feature selection algorithms with Fisher and artificial

neural network classification.
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8.1 Appendix A: Forms for audio-visual stimulation

Entrance form

Name:

Date of birth:

Experiences with Brain maschine, relaxation, meditation, joga, or other similar training:

Motivation and expectation before experiment:

yes no neutral

Passive attendance

Active ambition to learn relaxation

Curiosity and interest on Brain machine technology

I assume no effects

I hope to improve my relaxation skills

I am affraid of possible negative effects

Health problems in connection with potentially increased risk due to attendance in the

experiment (neurological affections, mental problems, drugs, etc.):

Other comments:

I have been acquainted with the experiment, its conditions and possible risks.

Signiture confirming your voluntary attendance:

Figure 8.1: Form designed for filling at the beginning of the whole experiment (section 4.5).
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Form

Name: Date: Session no.:

Time: Min. and max. impedance:

Evaluation before stimulation

How do you currently feel: very badly -3 -2 -1 0 1 2 3 very well

no neutral yes comment

momentary mind to follow the session

physical fatique

sleepy

emotional comfort

recet intake of drugs, alcohol, etc. --------

Evaluation after stimulation

Assess a level of your relief accomplished during the prestimulation period (ring a proper value):

tension -3 -2 -1 0 1 2 3 relax

Assess a level of your relief accomplished during the poststimulation period:

tension -3 -2 -1 0 1 2 3 relax

How do you currently feel: very badly -3 -2 -1 0 1 2 3 very well

no neutral yes

emotional comfort after session

Drowsiness and sleep:

certainly no may be certainly yes

prestimulation period

during stimulation

poststimulation period

Have you accomplished any mental freeing of the background and of your problems:

certainly no may be certainly yes

prestimulation period

during stimulation

poststimulation period

Special experiences

Different visions:

Other mental experiences and states:

Figure 8.2: Form designed for filling before and after each day measurement (section 4.5).
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Output form

Name:

Evaluate your overall attendance and experiences:

yes no neutral comment

Passive attendance

Could you relax actively?

Do you suppose any effects of this method?

Would you expect any negative effects?

Overall evaluation of drowsiness and sleep:

exceptionally occasionally often

pre and post stimulation periods

stimulation periods

Overall evaluation of mental freeing of the background and of your problems:

exceptionally occasionally often

pre and post stimulation periods

stimulation periods

Can you compare your release during non-stimulation and stimulation periods?

Do you think, have you improved your relaxation skills?

Your overall evaluation of the experiment:

Do you think, is there anything to learn while using Brain machines?

How did you feel during the rest of your session days?

Were your expectations from before the experiment fulfilled?

Evolution of visions (increased or decreased intensity, positive or negative emotional charge):

Overall evaluation of visions:

Overall evaluation of other mental experiences and states:

Comment to experiment setup, etc.:

Other comment:

Figure 8.3: Form designed for filling after completion of the whole experiment (section 4.5).
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8.2 Appendix B: Collection of results for

audio-visual stimulation
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Figure 8.4: Transient AVS effects: changes from prestimulation to poststimulation period.
Schematic depicting of significant increase (↗) and decrease (↘) (section 5.3).
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Figure 8.6: Trends in transient AVS effects. Schematic depicting of significant increase (↗) and
decrease (↘) (section 5.3).
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Figure 8.7: Continuation of Fig. 8.6.
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Figure 8.8: Long-term AVS effects: changes during the whole training period. Schematic de-
picting of significant increase (↗) and decrease (↘) (section 5.4).
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Figure 8.9: Continuation of Fig. 8.8.
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8.3 Appendix C: Additional material for

characteristics of relaxation
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Figure 8.10: Averaged curves for the most distinctive features (measure + location + one of
the following characteristics: beginning, end, or relative residual change (rrc)) for normally dis-
tributed samples (t-test). Classes R− and R+ indicate subjectively less and more successful
relaxation (section 6.3).
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Figure 8.11: Averaged curves for the most distinctive features (measure + location + one of fol-
lowing characteristics: beginning, end, or relative residual change (rrc)) obtained from t-test (the
first picture) and from Kruskall-Wallis test (all others). Classes R− and R+ indicate subjectively
less and more successful relaxation (section 6.3).



8. APPENDIXES 119

 9

 10

 11

 12

 13

 14

 0  20  40  60  80

[ 
µV

2 ]

time [x  2.1 sec]

power delta-2  f4c4  beg

R+

R-

 19.5

 20

 20.5

 21

 21.5

 22

 0  20  40  60  80

H
z

time [x  2.1 sec]

spectral edge 95  p3o1  beg

R+

R-

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  3  6  9  12  15

time [x  7.3 sec]

coherence delta-1  fc  end

R+

R-

 21.2

 21.6

 22

 22.4

 22.8

 23.2

 0  20  40  60  80

H
z

time [x  2.1 sec]

spectral edge 95  p4o2  rrc

R+

R-

 6

 8

 10

 12

 14

 0  20  40  60  80

%

time [x  2.1 sec]

relative power alpha-1  f3c3  end

R+

R-

Figure 8.12: Continuation of Fig. 8.11.
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Figure 8.13: Demonstration of measures where linear regression model was not appropriate.
Abbreviation ”po” designates posterio-occipital region, classes R− and R+ indicate subjectively
less and more successful relaxation (section 6.3).
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Figure 8.14: Polygons of features with the most distinctive mean according to t-test. Feature is
marked by measure, location, and one of the following characteristics: beginning, end, or relative
residual change (rrc). Polygons are displayed in order from the most distinctive features (from
left to right). Solid and dashed lines indicate classes of subjectively more and less successful
relaxation (section 6.3).
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Figure 8.15: Continuation of Fig. 8.14.
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Figure 8.16: Polygons of features with the most distinctive mean according to Kruskall-Wallis
test. Displayed in the order from the most distinctive features (from left to right). Feature
is marked by measure, location, and one of the following characteristics: beginning, end, or
relative residual change (rrc). Solid and dashed lines indicate classes of subjectively more and
less successful relaxation (section 6.3).
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Figure 8.17: Continuation of Fig. 8.16.
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Figure 8.18: Polygons of features with the lowest error in Fisher quadratic classification for
single features. Displayed in the order from the most distinctive features (from left to right).
Feature is marked by measure, location, and one of the following characteristics: beginning, end,
or relative residual change (rrc). Solid and dashed lines indicate classes of subjectively more and
less successful relaxation (section 6.4).
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Figure 8.19: Continuation of Fig. 8.18.
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Figure 8.20: Polygons of features with the lowest error from Neural network classifier. Displayed
in the order from the most distinctive features (from left to right). Feature is marked by measure,
location, and one of the following characteristics: beginning, end, or relative residual change (rrc).
Solid and dashed lines indicate classes of subjectively more and less successful relaxation (section
6.4).
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Figure 8.21: Continuation of Fig. 8.20.
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Figure 8.22: Continuation of Fig. 8.20.
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Figure 8.23: Averaged curves for the most distinctive features from Fisher and Neural network
classifier in one dimension. Feature is marked by measure, location, and one of the following
characteristics: beginning, end, or relative residual change (rrc). Classes R− and R+ indicate
subjectively less and more successful relaxation (section 6.4).


