
    

 

 

 

 

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY 

UNIVERZITY KOMENSKÉHO 

V BRATISLAVE 

 

KATEDRA BIOFYZIKY A CHEMICKEJ FYZIKY 

 

 

 

D I P L O M O V Á   P R Á C A 

 

 

 

 

 

 

                   2003                   Kristína Šušmáková 



FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY 
 

UNIVERZITY KOMENSKÉHO 
 

V BRATISLAVE 
 
 

 
KATEDRA BIOFYZIKY A CHEMICKEJ FYZIKY 

 
 
 
 
 
 

NELINEÁRNA ŠTATISTICKÁ ANALÝZA DYNAMIKY 
 

ĽUDSKEJ CHÔDZE 
 
 

Diplomová práca 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vedúci dipl. práce : Doc. RNDr Peter Babinec, CSc.    Kristína Šušmáková 
                                                                                                                       2003 



              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Prehlasujem, že som túto prácu vypracovala samostatne, za 

odbornej pomoci svojho diplomového vedúceho a s použitím literatúry 

uvedenej v zozname. 

 

            Bratislava, 2003 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ďakujem môjmu diplomovému vedúcemu Doc. RNDr. Petrovi Babincovi za 

pomoc pri tvorbe tejto práce, za odborné rady a povzbudenie. 

 



FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS 

COMENIUS UNIVERSITY 

BRATISLAVA 

 

DEPARTMENT OF BIOPHYSICS AND CHEMICAL PHYSICS 

 

 

 

 

NONLINEAR STATISTICAL ANALYSIS OF HUMAN GAIT 

DYNAMICS 
MSc thesis 

 

 

 

 

 

 

 

 

 

 

 

Supervisor: Doc. RNDr. P. Babinec, CSc.                                         Kristína Šušmáková 

                                                                                                                                          2003 



CONTENTS   

Introduction     1 

1. Human locomotion and the neurodegenerative diseases                       3 

1.1. Locomotion 3 

1.2. Neurodegeneative diseases                                                                       4 

1.2.1. Amyotrophic lateral sclerosis (ALS)                                                     4 

1.2.2. Huntington’s disease (HD)                                                                    6 

1.2.3. Parkinson’s disease (PD)  6 

2. Nonlinear techniques of time series analysis 7 

2.1. Dynamical systems                                                                                   8 

2.2. Phace space and embedding                                                                     9 

2.3. Lyapunov exponents                                                                                10 

2.4. Linear observable                                                                                     11 

2.5. Dimension and entropy                                                                            12 

2.6. Nonlinear analysis of limited data                                                            14 

2.7. Nonstationarity and recurrent plot                                                            16 

3. Present state of human locomotion analysis 18 

3.1. Measures of Stride-to-Stride variability                                                   18 

3.2. Measurements of the Temporal Structure                                                18 

3.3. Maturation of gait dynamics                                                                     20 

3.4. Analysis of ALS, HD and PD                                                                  22 

RESULTS OBTAINED IN THE THESIS                                                        24 

4.  Nonlinear structure of  human gait dynamics                                             25 

4.1. Human gait maturation                                                                          25 

4.1.2. Reconstruction of dynamical system behind the stride dynamics         27 

4.1.3. Recurrence quantification analysis                                                        30 

4.2. Human gait during neurodegenerative diseases                                   41 

4.2.1. Analysis of stride intervals and Fourier spectra                                     41 

4.2.2. Reconstruction of dynamical system behind the stride dynamics          42 

4.2.3. Recurrence quantification analysis                                                         42 

Conlusion         62 

References 63 

Resumè     65 

 



 - 1 - 

Introduction 

 

The popularity of chaos theory, judged by the number of scientific publications 

and by the attention of media, has a dangerous drawback in that it could be seen as the 

answer to everything, something that is obviously not. An example of this 

oversimplification is to be found in the phenomenon of turbulence in fluid flows. Over 

the past decade the words chaos and turbulence have become almost synonymous in 

many popular accounts and yet the connection between the two is far from obvious even 

today. Common opinion is that the ideas of chaos have thus far added very little to the 

understanding of the phenomenon of turbulence. However, chaos seems to have 

survived the fashionable phase and perhaps one reason is that the natural world is 

inherently non-linear. Therefor, one should expect to find chaos rather than order and 

perhaps we now have some tools for furthering our understanding of what was 

previously thought of as random noise. There are many deep mathematical ideas behind 

the dynamical systems approach to the study of nonlinear phenomena which are aimed 

at describing and understanding the origins and structures of complicated behavior. 

Naturally, there has been tendency to extend some of these ideas into fields 

where is no rigorous justification for doing so. There are often resolute efforts to tackle 

very difficult problems with new scientific ideas. The very last that one can say is that 

non-linearity should play a key role in natural phenomena and therefore some of these 

modern concepts may well give a new insight into some unresolved problems. On the 

other hand it is also worth noting that an irregular time series formed from ice core 

samples or the monitoring of bodily function for example need not necessarily be 

describable in terms of low-dimensional chaos. Therefore one must remain cautious 

about such studies for it is quite easy to misrepresent the above ideas by an imprecise 

application of techniques which have thus far only been successfully tested in well-

controlled laboratory situations. However, if new insights into difficult areas are 

obtained using this approach, which amount to more than putting common sense into 

fancy mathematical language, then a great deal has been achieved. 

In the recent decades the chaos theory was applied into physiological systems. It 

was discovered that randomness and unpredictability are characteristic features for 

healthy and young organisms, while ill people exhibit some regular structures. Our aim 

in this thesis is to apply various nonlinear techniques developed recently to the study of 

human locomotion. The locomotion is driven by nervous system in complex manners. 
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Information flows lead from central nervous system to the muscles in several ways, 

some of them have the feedback mechanism. Human locomotion has only recently 

begun to understand through the application of nonlinear data processing techniques to 

study stride interval data. It has been known for over a century that there is variation of 

3-4 % in the stride intervals of human during walking but only in the last few years has 

been demonstrated that the stride-interval time series exhibits long-time correlation, 

suggesting that the phenomenon of walking is a self-similar, fractal activity. 

When the little children begin to walk, their locomotor system is not fully 

mature. Our first aim is to characterize the development of mature gait and to compare 

it with the gait of adult people. 

The neurodegenerative diseases are consequence of the interruption of the 

information flow between the central nervous system and muscles. Our second aim is to 

search the difference of the dynamics between people with neurodegenerative diseases 

and healthy controls. In the concrete we are studying people with amyotrophic lateral 

sclerosis, Huntington’s disease and Parkinson’s disease. We are using visual recurrence 

analysis. We want to consider if this method could help in diagnosis of these diseases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 3 - 

1. HUMAN LOCOMOTION AND THE NEURODEGENERATIVE DISEASE 

 

1.1. Locomotion 

 

Locomotion is one of the attributes of the life. It is necessary to obtain food, to 

escape before enemy, between people to make a work, communication and other social 

functions. 

Locomotion and posture of the body are high organised functions, on which 

muscels, receptors, vegetative nervs and almost all parts of the central nervous system 

participated. Locomotion can be divided into voluntary and involuntary motion. The 

scheme of the motor control of nervous system is on the Figure 1.1 [Trojan et al., 

Fyziologia 2]: 

 

 
                                 Figure 1.1. 

 

 Nervous system is structurally and functionally arranged. The basist reflexes are 

controled by the spinal chord. Through the dorsal root the spinal chord receives 

information from sensory perception  and the ventral horns contain the α-motor 

neurons, whose travel through the ventral root direct to the muscles. 

The more difficult reflexes are analysing in the upper parts of the central 

nervous system and the outgoing informations are then sending with pyramidal and 

extrapyramidal tracts to the spinal chord. Pyramidal tracts connect direct the motor 

cortex with the motor neurons in the spinal chord. There is a system of feedbacks 

through the reticular formation, cerebellum, and basal ganglia. Pyramidal tracts provide 
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the informations about the impuls of the voluntary motion, they drive the fast and exact 

locomotions. Extrapyramidal tracts carry forward the information from the cortex 

through the basal ganglia, thalamus, motor centres of the midbrain, pont and the 

reticular formation to the spinal chord. This system assures slow and difficult 

locomotion, it is also importent for the coordination of voluntary and involuntary 

motion. Very importent parts are basal ganglia and cerebellum. The output of the 

cerebullum is excitatory, while the basal ganglia are inhibitory. The balance between 

these two systems enables the smooth and coordinated movements. 

 

1.2. Neurodegenerative diseases 

 

Neurodegenerative diseases are a group of disorders characterized by changes in 

the normal neuronal function, leading, in most cases, to neuronal death. They are 

sometimes referred to as "system degenerations" as they tend to affect selectively 

certain specific system of the nervous system. In most instances, the etiological causes 

are unknown and they have a progressive development.  

Neurodegenerative diseases can be divided: 

• Diseases affecting predominantly the cerebral cortex (Alzheimer’s disease, 

Pick’s disease, Creutzfeld-Jakob disease) 

• Diseases affecting predominantly the basal ganglia (Parkinson’s disease, 

Huntington’s disease) 

• Spino-cerebellar degeneration (Friedreich's ataxia, Olivo-ponto-cerebellar 

atrophy) 

• Motor neuron diseases (amyotrophic lateral sclerosis) 

 

1.2.1. Amyotrophic lateral sclerosis (ALS)  

 

 ALS was first described in scientific literature in 1869 by the French neurologist 

Jean-Martin Charcot. The term ALS comes from Greek words: a - without, myo - 

muscle, trophic - nourishment, lateral - side, sclerosis - hardening or scarring. 

 ALS is a fatal neuromuscular disease, which induces the gradual degeneration 

and death of the motor neurons. The flow of information between the central nervous 

system and muscles is broken and the brain looses the ability to start and control the 
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voluntary movements. When an ALS patient first notices neurological symptoms, more 

than half of the motor neurons may already be dead. ALS destructs only motor neuron, 

so mental functions maintain intact. 

 ALS symptoms may include tripping, stumbling and falling, loss of muscle 

control and strength in hands and arms, difficulty speaking, swallowing and/or 

breathing, chronic fatigue, and muscle twitching and/or cramping. ALS is characterized 

by both upper and lower motor neuron damage. Symptoms of upper motor neuron 

damage include stiffness (spasticity), muscle twitching (fasciculations), and muscle 

shaking (clonus). Symptoms of lower motor neuron damage include muscle weakness 

and muscle shrinking (atrophy). Most ALS patients first notice muscle weakness in 

either the arms or the legs (32 percent in the arms and 36 percent in the legs.)  This is 

called limb-onset ALS.   

Approximately 25% of ALS patients have difficulty speaking as their first symptom. 

This is called bulbar ALS because it involves the corticobulbar area of the brainstem. 

ALS is a very variable disease, and there are also cases affecting breathing first, without 

any other symptoms. Approximately 7 percent have difficulty breathing (dyspnea) as 

their first symptom. 

 The cause of ALS is unknown and also we do not have an efficient cure, only 

some medications whose help to relieve the symptoms.  Therapies, supplements, and 

proper nutrition can be part of a treatment plan.  The incidence of ALS is two persons 

pro 100.000 people. Men get ALS more than women (the ratio is 1.5 to 1.0). 80% of 

ALS cases begin between the ages of 40 to 70.  At least 10% of ALS cases are 

hereditary. This is called familial ALS. Generally, we define familial ALS as two or 

more cases in the same bloodline. In familial ALS the disease is autosomal dominant, 

meaning that if a parent has ALS, their children have a 50% chance of inheriting the 

defective gene.  

 50% of ALS patients die within 18 months after diagnosis. Only 20% survive 5 

years and 10% live longer than 10 years. Persons with ALS who go on a ventilator may 

live for many years. Improved treatment is allowing ALS patients to live longer than 

before. A common cause of death among ALS patients is respiratory failure or cardiac 

arrhythmias due to insufficient oxygen. Another common cause of death is respiratory 

infection such as pneumonia. The risk of respiratory infections increases as weakened 

diaphragm and chest muscles make it more difficult to clear the lungs. 
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1.2.2. Huntington’s disease (HD) 

 

 HD is a dominant hereditary illness, it was first described in the year 1872 by 

George Huntington. HD typically begins in mid-life, between the ages of 30 and 45, 

athough there are some cases  when onset occured about the age of 2. Children who 

develop the juvenile form of the disease rarely live to adulthood. Each child of a person 

with HD has a 50% chance of inheriting  the fatal gene. Everyone who carries the gene 

will develop the disease. In 1993, the HD gene was isolated and  a direct genetic test 

developed which can accurately determine whether a person carries the HD gene. The 

test cannot predict when symptoms will begin.  

Early symptoms of HD may affect cognitive ability or mobility and include 

depression, mood swings, forgetfulness, clumsiness, involuntary twitching and lack of 

coordination. As the disease progresses, concentration and short-term memory diminish 

and involuntary movements of the head, trunk and limbs increase. Walking, speaking 

and swallowing abilities deteriorate. Eventually the person is unable to care for him or 

herself. Death follows from complications such as choking, infection or heart failure.  

 At this time, there is no way to stop or reverse the course of HD. Physicians 

prescribe a number of medications to help control emotional and movement problems 

associated with HD. Most drugs used to treat the symptoms of HD have side effects 

such as fatigue, restlessness, or hyperexcitability. It is extremely important for people 

with HD to maintain physical fitness as much as possible, as individuals who exercise 

and keep  active tend to do better than those who do not. 

 

1.2.3. Parkinson disease (PD) 

 

Parkinson's disease was first described in 1817 by James Parkinson. It is the 

second most common movement disorder. About 1-2 % of population is affected. 

Parkinson's disease strikes men and women in almost equal numbers. PD is a disease of 

late middle age, usually affecting people over the age of 50. The average age of onset is 

60 years, only at 5 to 10 % of patients are under 40.  

PD results of the lack of dopamine-producing nerve cells. Dopamine is a 

neurotransmitter, which facilitates the flow of impulses between two parts of the basal 
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ganglia - from substantia nigra to striatum. The loss of dopamine causes that people are 

unable to control their movement in normal manner. 

Early symptoms of Parkinson's disease are subtle and occur gradually. Patients 

may be tired or notice a general malaise. Some may feel a little shaky or have difficulty 

getting out of a chair. They may notice that they speak too softly or that their 

handwriting looks cramped and spidery. They may lose track of a word or thought, or 

they may feel irritable or depressed for no apparent reason. This very early period may 

last a long time before the more classic and obvious symptoms appear.  

The four primary symptoms of PD are tremor or trembling in hands, arms, legs, 

jaw, and face; rigidity or stiffness of the limbs and trunk; bradykinesia or slowness of 

movement; and postural instability or impaired balance and coordination. As these 

symptoms become more pronounced, patients may have difficulty walking, talking, or 

completing other simple tasks. The disease is both chronic, meaning it persists over a 

long period of time, and progressive, meaning its symptoms grow worse over time.  

There are various other symptoms whose accompany PD: depression, emotional 

changes, memory loss and slow thinking, difficult swallowing and chewing or speech 

changes and sleep problems. 

At present, there is no cure for Parkinson's disease. But a variety of medications 

provide dramatic relief from the symptoms. 

 

2. Nonlinear techniques of time series analysis 

 

The most direct link between chaos theory and the real world is the analysis of 

time series data in terms of nonlinear dynamics. Most of the fundamental properties of 

nonlinear dynamical systems have by now been observed in the laboratory. Evidence 

for chaotic behavior in field measurements has been claimed in many areas of science, 

including biology, physiology, and medicine, geo- and astrophysics, as well as the 

social sciences and finance. 
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2.1. Dynamical systems  

 

When we are analyzing an irregular sequence of measurements, an immediate 

question is what kind of process can generate such a series. There exist two opposite 

approaches - nonlinear deterministic and linear stochastic ones.  

In the deterministic picture, irregularity can be autonomously generated by the 

nonlinearity of the intrinsic dynamics. Let the possible states of a system be represented 

by points in a finite dimensional phase space - Rd. The transition from the system’s state 

x (t1) at time t1 to its state at time t2 is then governed by a deterministic rule: 

))(()( 12 12
txTtx tt −= . This can be realized either in continuous time by a set of ordinary 

differential equations:   

 ))(()( txFtx =                    (2.1) 

or in discrete time t = n∆t by a map of Rd onto itself:  

             )(
1 nxfx

n
=

+
                      (2.2)                                   

The family of transition rules Tt, or its realisation in the forms (2.1) or (2.2), are referred 

to as a dynamical system. The particular choice of F (resp. f ) allows for many types of 

solutions, ranging from fixed points and limit cycles to irregular behaviour. 

 If the dynamics is dissipative the points visited by the system after transient 

behaviour has died out will be concentrated on a subset of Lebesgue measure zero of 

phase space. This set is referred to as an attractor, the set of points that are mapped onto 

it for ∞→t  as its basin of attraction. Since not all points on an attractor are visited with 

the same frequency, one defines a measure µ(x)dx, the average fraction of time a typical 

trajectory spends in the phase space element dx. In an ergodic system, µ(x) is the same 

for almost all initial conditions. Phase space averages taken with respect to µ(x)dx are 

then equal to time averages taken over a typical trajectory. 

In real world systems, pure determinism is rather unlikely to be realised since all 

systems somehow interact with their surroundings. Thus the deterministic picture 

should be regarded only as a limiting case of a more general framework involving 

fluctuations in the environment and in the system itself. However, it is the limiting case 

that is best studied theoretically and that is expected to show the clearest signatures in 

observations. 
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The opposite approach to analysis of the time series is that external random 

influences causing the irregularity, while only linear rule may be sufficient to explain 

the structure in the sequence. The most general linear model is the autoregressive 

moving average process, giving by: 

           

            in

N

i
iin

M

i
in bxax −

=
−

=
∑∑ += η

01

             (2.3) 

where {ηn} are Gaussian uncorrelated random increments.  

 

2.2. Phace space and embedding 

 

 The time evolution is given by a dynamical system in phase space. Since 

usually the state points can not be observed directly but only through a measurement 

function, typically involving a projection onto fewer variables than phase space 

dimensions, we have to recover the missing information in some way. This can be done 

by time delay embeddings and related methods. We can then quantify properties of the 

system through measurements made on the embedded time series. Since it is eventually 

the underlying system we want to characterise, these properties should ideally be 

unaffected by the measurement and the embedding procedure. The theoretical 

framework of this approach is set by a number of theorems, all of which specify the 

precise conditions when an attractor in delay coordinate space is equivalent to the 

original attractor of a dynamical system in phase space. 

Let {x(t)} be a trajectory of a dynamical system in Rd and {s(t) = s(x(t))} the 

result of a scalar measurement on it. Then a delay reconstruction with delay time τ and 

embedding dimension m is given by  

))(),...,)2((),)1((()( tsmtsmtsts ττ −−−−=
r

                       (2.4) 

The delay embedding theorem by Takens [Takens, 1981] states that among all delay 

maps of dimension m = 2d+1, those that form an embedding of a compact manifold 

with dimension d are dense, provided that the measurement function s : Rd → R is C2 

and that either the dynamics or the measurement function is generic in the sense that it 

couples all degrees of freedom. In the original version by Takens, d is the integer 

dimension of a smooth manifold, the phase space containing the attractor. Thus d can be 

much larger than the attractor dimension. 
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2.3. Lyapunov exponents 

 

The hallmark of deterministic chaos is the sensitive dependence of future states 

on the initial conditions. An initial infinitesimal perturbation will typically grow 

exponentially, the growth rate is called the Lyapunov exponent. Let xn1 and xn2 be two 

points in state space with distance ||xn1 – xn2|| = δ0 << 1. Denote by δ∆n the distance after 

a time ∆n between the two trajectories emerging from these points, 

δ∆n = ||xn1+∆n – xn2+∆n|| then the Lyapunov exponent λ is determined by 

δ∆n  ≅ δ0eλ∆n,   δ∆n << 1,   ∆n >> 1.   (2.5) 

A positive, finite value of λ means an exponential divergence of nearby trajectories, 

which defines chaos. Here, only the single (maximal) Lyapunov exponent will be 

discussed. Lyapunov spectra can be defined that take into account the different growth 

rates in different local directions of phase space. However, the non-leading exponents 

are notoriously difficult to estimate from time series data. Only in very few cases of 

clean laboratory time series trustworthy results have been obtained so. For field data, 

Lyapunov spectra beyond the first exponent have not so far been demonstrated to be a 

useful concept. 

There have been a number of attempts to generalise the Lyapunov exponent to 

systems which are not purely deterministic. For the usual definition, an arbitrarily small 

amount of noise leads to a diffusive separation of initially close trajectories and a 

divergent Lyapunov exponent (mind the order of the two limits involved). For very 

small noise levels, there may still be a range of length scales where the separation 

proceeds exponentially, until the finite size saturation is reached. This is the behaviour 

that is probed by the real space methods of estimating Lyapunov exponents from data, 

in particular the two very similar algorithms introduced independently by Rosenstein et 

al. [Rosenstein et al., 1993], and by Kantz [Kantz, 1994]. From the theoretical point of 

view, intermediate length scale definitions are less attractive since the resulting 

quantities are no longer invariant under smooth coordinate transformations. An 

alternative way to introduce noise into the definition of Lyapunov exponents is to study 

the separation of initially close trajectories of two identical copies of a system that are 

evolving subject to the same noise realisation. Then the Lyapunov exponent quantifies 

the contribution to the divergence that originates in the intrinsic instability of the 
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deterministic part of the system. This is essentially the kind of instability probed by the 

tangent space methods to obtain Lyapunov exponents from data. 

 

 2.4. Linear observable 

 

In the linear approach to time series analysis, a quantitative characterisation of a 

process is done on the basis of either the two-point autocovariance function or the 

power spectrum. If only a finite time series {sn, n = 1 . . .N} is available, the 

autocovariance function can be estimated by: 

                   ∑
+=

−−=
N

n
nnssNC

1

)/(1)(
τ

τττ       (2.6) 

                                                

Depending on the circumstances, other estimators may be preferable. A whole branch of 

research is devoted to the proper estimation of the power spectrum from a time series. 

The simplest estimator, known as the periodogram Pk, is based on the Fourier transform 

of {sn}, 

 ∑
−

=

=
1

0

/2
N

n

Nkni
nk esS π                           (2.7) 

 

through Pk = |Sk|2. According to the Wiener-Khinchin theorem, the power spectrum of a 

process equals the Fourier transform of its autocovariance function. For finite time 

series this is only true if either C(τ) is computed on a periodically continued version of 

{sn}, or Pk is computed on a version of {sn} that is extended to n = -N, . . . ,N by 

padding with N zeroes. Nevertheless, both descriptions contain basically the same 

information, only that it is presented in different forms.  

The power spectrum of a process is unchanged by the time evolution of the 

system (if it is stationary). However, it is affected by smooth coordinate changes, e.g. by 

the characteristics of a measurement device. Usually, the non-invariance of the power 

spectrum is not a serious drawback. The power spectrum is most useful for the study of 

oscillatory signals with sharp frequency peaks. The location of these peaks is conserved, 

only their relative magnitude may be affected by the change of coordinates. Sharp peaks 

in the power spectrum indicate oscillatory behaviour and are useful indicators in linear 

as well as in nonlinear signals. Broad band contributions, however, have a less clear 
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interpretation since they can be either due to deterministic or stochastic irregularity. 

Therefore, the power spectrum is only of limited use for the study of signals with 

possible nonlinear deterministic structure. 

 

2.5. Dimension and entropy 

 

The chaotic dynamical systems are characterized besides the exponentially 

divergence of the trajectories by the irregular geometry of the sets in phase space visited 

by the system state point in the course of time. The divergence of the trajectories can be 

realized in a finite phase space only through some folding mechanism. Stretching, 

folding and volume contraction lead to statistically self-similar structure on small length 

scales. The loss of information due to the folding is reflected by the entropy of the 

process. 

The self-similar structure can be characterized by the fractal dimension. Most 

well known is the Hausdorff dimension of the set and more easily computable box 

counting dimension. We can also weight the points in the set by the frequency with 

which they are visited on average, then we need a definition of the dimension in terms 

of the natural measure µ(x)dx. It could be defined by means of correlation integrals 

Cq(e). Let ?(x) be the locally averaged density: 

∫ −−Θ=
y

yxydyx )/||||1()()( εµρ εε    (2.8) 

where T e(1-r/e) is the Heaviside step function, T(x) = 0 if x = 0, T(x) = 1 for x > 0. The 

correlation integral of the order q is given: 

 ∫ −=
x

q
q xxdxC 1)]()[()( ερηε               (2.9) 

For a self-similar process we have:   

 0,)( )1( →≈ − εεε qDq
qC     (2.10) 

Dq is called the order-q dimension. D0 has been shown to coincide with the Hausdorff 

dimension. D1 is the information dimension – it quantifies the scaling of the amount of 

information needed to specify the state of the system with the required accuracy. D2 is 

the correlation dimension – a means of quantifying the “strangeness” of an atractor [ 

Grassberger,Procaccia, 1983]. 
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 When analysing time series we are usually dealing with distributions of delay 

vectors with delay t  in an m-dimensional reconstructed phase space. The m dependence 

of Cq in the limit of large m can be expressed as: 

 ∞→→= −−− moemmC qq Dqmhq
q ,,)(),( )1()1( εεαε τ    (2.11) 

which defines the order q entropy hq. The prefactor a(m) depends on the norm.  

 

 2.6. Nonlinear analysis of limited data 

 

 Real word data are represented with a finite length and noise time series so the 

previous definitions and concepts have to be adapted to this conditions. The way to 

proceeds crucially depends on the point of view we want to assume about the nature of 

the system. We can not assume the deterministic chaos for any time series, we have to 

establish it from the data. But we may still borrow some concepts just because they give 

a convenient framework for certain problems. 

 The embedding theorem assumes that the observations are available with 

arbitrary precision and arbitrarily small length scales can be accessed, which implies 

that an infinite amount of information is available. Several authors have investigated 

what happens to the embedding procedure when noise is present and the sequence is of 

finite length.  

 For the embedding procedure noise is the dominant limiting factor. First we need 

to make a distinction between noise due to measurement error, then a deterministic 

dynamical system is underlying the signal, and noise that is intrinsic to the dynamical 

system. If the noise is coupled to the system we have to specify in what sense we want 

to use the embedding in the first place. The nature of the noise is usually not known 

independently. There is no general way to infer its properties from time series without 

making strong assumptions about the dynamical system or the spectral properties of the 

noise. 

 One study about the effect of measurement noise on the embedding procedure is 

that by Casdagli and coworkers [Casdagli et al., 1991]. Their main result is that a 

reconstruction technique that leads to a formally valid embedding with noise free data 

can nevertheless amplify the noise even in a singular way. That means that in such a 

case not all degrees of freedom of the system can be recovered from a scalar time series 

even for arbitrarily small amount of noise.  
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 There are some results on the embedding of noise driven signals. One line of 

though supposes that the driving noise sequence is known. The dynamical system then 

becomes a nonlinear input-output device. The observation of the output of such a 

system can be embedded in the sense that time delayed copies of the observation 

sequence together with the state of the input variable specify the state of the equally 

well as the full output together with the input state.  

 There are other works that also follow the idea that the dynamical noise can be 

isolated in certain cases where the observations contain sufficient redundancy [Muldoon 

et al., 1997]. If there are more probes available than necessary to cover the degrees of 

freedom of the system it’s possible to make distinction between the deterministic parts 

of the signal and the dynamical noise. This allows to recover missing variables by an 

embedding procedure.    

One immediate restriction of the embedding theorem for finite data is that the 

information contained in a time delay representation is influenced by the choice of 

embeddings parameters. While embedding theorem do not restrict the delay time t , the 

proper choice of t  does matter for practical applications. Also, there are many cases 

where the theoretically sufficient embedding dimension m is not optimal for a certain 

purpose. Larger (but sometimes also smaller) dimension may give better results. 

 

2.7. Estimating dynamics and predicting 

 

An irregular signal can be generated by a nonlinear dynamical system with only 

a few degrees of freedom. One of the goals should be to find the equations of motion 

that follow this principle and are consistent with the data. The ability to produce a time 

series that is equivalent to the measured one can be taken as an evidence for the validity 

of the approach. If we reconstruct the equations of the dynamical system we are often 

interested in prediction of future values. Moreover, in many situations the average error 

when predicting a time series can br taken as a indicator of the structure present in the 

data.  

Chaotic dynamical systems are structural instable. This means that models with 

very similar parameters may exhibit qualitatively different global dynamics. Therefore, 

if we simply iterate fitted model equations, we may see substantially different behavior 

from the actual system even if the model in itself is faithful. One way to moderate this 

danger is to introduce a small amount of dynamical noise comparable to the modeling 
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error when iterating the equations. Dynamical noise softens the sensitive dependence on 

parameters to some extent. Alternatively one could study ensembles of models, which 

are compatible with the data.  

The task is to estimating the function F or f that is supposed to generate the data 

after the equation (1) or (2) respectively. All we have is a scalar noise time series: 

nnn xss ξ+= )( ,        nnn xfx η+= − )( 1                                          (2.12) 

Also an intrinsic noise term ? is included because no real system is ever really isolated. 

Since we cannot completely recover {xn} from {sn}, the best we can do is to use some 

kind of embedding of {sn} and look for a mapping sf  that acts on the embedding 

vectors. The standard approach is to choose some parameters dependent model for sf  

and optimize the parameters using a maximum likelihood or least squares procedure. 

This assumes that the value )(xfy s=  is known at a number of locations, with some 

uncertainty.            

As for the model class from which f is to be determined, a number of different 

propositions have been made. One possibility is to expand the dynamics in Taylor series 

locally in phase space [Eckmann et al. B, 1986 ]. In practice, the expansion is carried 

out up to at most linear order. Since one has to work in several dimensions, the number 

of coefficients in higher order approximations becomes too large for a local treatment. 

In m-dimensional delay coordinates, the local model is then quite simply: 
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where ? n is the time over predictions are being made and t  is the time delay as usual.  

The coefficients mja n
j ,...,0,)( =  may be determined by a least squares 

procedure, involving only points sk within a small neighborhood around the reference 

points sn . Thus, the coefficients will vary throughout phase space. The fit procedure 

amounts to solving m+1 linear equations for m+1 unknowns.   

The optimal degree of locality of a locally linear modeling approach has been 

used as a measure for nonlinearity in a time series. It is compared the predictive quality 

of models fitted with using different numbers of neighbors. In the absence of 

nonlinearity, the globally linear fit using all available points as neighbors should give 

best results since it uses the largest number of points and is structurally more robust. For 

increasing degrees of nonlinearity, the tradeoff between lack of statistics with few 
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neighbors and curvature error with large neighborhoods should move the optimum 

towards smaller length scales. So we can estimate the degree of nonlinearity what is the 

most useful assumption for modeling. 

The different class of approaches for modeling attempts to fit the dynamics by a 

nonlinear function that is globally defined in the phase space. So the task is to minimize 

this expression: 

σ2 = Σ( sn+1 – fp(sn))2    (2.14) 
            n 

where fp is now a nonlinear function with parameters p, with respect to which the 

minimization is done. Polynomials, radial basis functions orthogonal polynomials and 

others functions have been used. 
 

 

2.8. Nonstationarity and Recurrence Plots 

  

 Almost all methods of time series require some kind of stationarity. Therefore, 

changes in dynamics during the measurement are undesirable. But sometimes these 

changes represent the most interest information about the system. In the past the 

question was solved how to established the stationarity. If nonstationarity was detected, 

often time series was discarded as unsuitable for detailed analysis, or it was split into 

segments that were short enough to be regarded as stationary. More recently, authors 

have begun to recover the information contained in time-variable dynamics as an 

essential part of the underlying process.  

 The most common definition of a stationary process is that all conditional 

probabilities are constant in time. This definition is not applicably for real world 

processes. If we regard deterministic process a limiting case of stochastic process where 

the conditional probability density for a transition from the state x to x’ is given by 

))(( xfx −′δ , the definition requires ()f  to be unchanged. The transition probabilities 

are unknown and have to be estimated from the data, subject to statistical fluctuations. 

In some cases these fluctuations are large and the properties of measured data can 

changed dramatically, even though the underlying process is formally stationary after 

the above definition. There is no agreement on a definition of a stationary process. It is 

reasonable to require that the duration of the measurement is long compared to the time 
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scales of the system. Then all temporal changes can be modeled as part of the dynamics. 

So processes with power low correlations are often considered nonstationary since no 

length of measurement could ever cover all time scales. On the other hand, processes 

with very well separated time scales can lead to time series which are stationary for 

practical purposes.   

 There are a lot of statistical tests for nonstationarity. Most of them  is based on 

estimating a parameter by using different parts of time series. If variations are found to 

be significant, the time series is regarded as nonstationary. 

 When thinking of geometry in the phase space, nonstationarity introduces a 

tendency that points close in space are also close in time. The basic graphical tool that 

evaluates temporal and space distance of states is recurrence plot of Eckmann 

[Eckmann et al., 1987]. Recurrence Plots (RPs) are relatively new technique for the 

qualitative assessment of time series. With RP, one can graphically detect hidden 

patterns and structural changes in data or see similarities in patterns across the time 

series under study. 

 Recurrence plots are intricate and visually appealing. They are useful for finding 

hidden correlations in highly complicated data. Because they make no demands on the 

stationarity of a data set, RPs are particularly useful in the analysis of systems whose 

dynamics may be changing. The use of recurrence plots in time-series analysis has 

become more common in recent years, particularly in the area of physiology. 

 An RP is a two-dimensional representation of a single trajectory. The time series 

spans both ordinate and abscissa and each point (i, j) on the plane is shaded according to 

the distance between the two corresponding trajectory points yi and yj. In an 

unthresholded RP (UTRP) the pixel lying at (i, j) is color-coded according to the 

distance, while in a thresholded RP (TRP) the pixel lying at (i, j) is black if the distance 

falls within a specified threshold corridor and white otherwise. RPs are symmetrical 

along the x = y axis, where each point is plotted against itself and this diagonal roughly 

represents time [Zbilut, Webber, 1992]. The RP generated from a chaotic data set is far 

more complicated, although it too has block-like structures resembling to what might be 

expected from a periodic signal. For random signal, the uniform (even) distribution of 

colors over the entire RP is expected and the colors on the UTRP for the time sequence 

“deepen” away from the main diagonal.  

The basic idea behind the interpretation of the RPs is simple: if the underlying 

signal is truly random and has no structure, the distribution of colors over the RP will be 
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uniform, and so there will not be any identifiable patterns. If, on the other hand, there is 

some determinism in the signal generator, it can be detected by some characteristic, 

distinct distribution of colors. The main advantage of the recurrence plots over another 

widely used techniques as for example Fourier analysis, is that they preserve both 

temporal and spatial dependence in the time series. Even though Fourier analysis 

reveals the distribution of spectral frequencies, it does not show how self-similar, 

resonant frequencies are patterned as a function of time. Yet, RP is mostly a qualitative 

tool and the precise meaning of the patterns is unknown. 

 

 

3. Present State of Human Locomotion Analysis  

 

3.1. Measures of Stride-to-Stride Variability 

 

 The basis means to estimate the stride-to-stride variability is the standard 

deviation (SD) and the coefficient of variation (CV = 100 * SD / mean). But these 

measures can not distinguish between gait with large stride-to-stride variations and gait 

with small variations from one stride to the next one, but influenced with long-range 

changes, for example with the change in speed. To eliminate the local changes in the 

mean SD of the first difference of the time series is calculated.     

 

 

3.2. Measurements of the Temporal Structure 

 

 Spectral analysis 

 Fourier spectral analysis is one of the standard methods for studying the 

dynamics of the time series. To remove the effects of the length, mean and SD of the 

time series, the same number of strides is taken into account, from each value is 

subtracting the mean and it is dividing by the SD. This produces a time series with mean 

0 and with SD equals to 1.0. Then the standard Fourier transformation is performed, 

with the use of a rectangular window. The ratio of the percentage of power in the low 

frequency band to percentage of power in the high frequency band determines the 

"balance" of the spectra. The large ratio indicates nonstationarity.  



 - 19 - 

 To quantify the dynamic differences in time series we can calculated the ß 

exponent, which is the negative slope of the regression line drawn through the double 

log graph of power versus frequency. A ß-exponent of 0 represents the white noise, 

whereas others values suggest that there are correlations in the data. A value close to 1 

reveals the long-range, fractal correlations, the value 2 indicates the Brownian noise 

also known as the random walk.    

 

 Autocorrelation decay 

 Autocorrelation function has the information about the "memory" of the system. 

It estimates how the time series is correlated with itself over different time lags:  Two 

indexes are calculated τ37 and τ67. τ37 (τ67) is equals the number of the strides, after 

whose the autocorrelation function decays to 37 % (67%) of its initial value.  

 

 Detrended fluctuation analysis (DFA) 

 DFA is method, which studies the long-range, fractal properties in long time 

series or how change the correlation relations over different time scales. Self-similarity 

and the fractional dimension characterize fractal objects. Self-similarity means that 

there exist subsets whose after proper scaling have the same statistical properties as the 

whole set.  

First is the time series is integrated:  

                                                 ])([)(
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where x(j) is j-st point in the time series of length N and xave is the average value of the 

time series. 

Next the integrated time series is divided into boxes wit same length n, in each box the 

least-square line fitting yn(k) is calculated. The integrated time series is detrended by 

subtracting the local trend yn(k) and the root-mean square fluctuation F(n) is calculated: 
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This computation is repeated for different box sizes to capture relationship between F(n) 

and the box size n. The slope of the double log-log graph determines the fractal scaling 

index α.  
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• For white noise where the values are completely uncorrelated α is equals to 0.5 

• For short-term correlation α is differ from 0.5, but it will approach 0.5 for large 

window sizes. 

• An α greater than 0.5 but less than or equal 1.0 indicates long-range power-low 

correlations  

• When α >1, correlations exist but cease to be of a power-low form 

• α = 1.5 indicates the brown noise 

• when 0 < α < 0.5 power-low anticorrelations are present, large values are more 

likely to be followed by small values and vice versa 

The fractal scaling a is related to ß-exponent by formula: a = (ß + 1)/2. 

 

Normalized nonstationarity index (NSI) 

 NSI is used to evaluate how the local average is change during the process, 

independent of the fluctuation magnitude. The same number of points of the time series 

is taken and normalized with respect to the mean and SD. This new time series is 

divided into segments and local averages are computed. NSI is defined as the SD of 

these local averages. NSI provides a measure of the consistency of the local average 

values, independent of the overall variance of the original time series. Higher NSI 

values indicate more inconsistent local averages. 

 

 3.3. Maturation of gait dynamics 

 

 When children learn to walk, this activity is accompanied with frequent falls and 

large stride- to-stride variability. In the age about three years old their gait appears 

relatively mature. But the neuromuscular control is developed beyond this age, so subtle 

changes in the gait dynamics are assumed.  

 In adult healthy people the gait duration is changed too, but with small 

magnitude of the fluctuations. Although this variability appears random, with no 

correlation between successive strides, the locomotor system possesses "memory", so 

the change from one stride to the next one displays temporal structure with fractal 

organization.  

 The variability of the stride time decreases in children with age. The typical time 

series of 4-, 7- and 11-years old children are in the Fig. 3.1.[Hausdorff et al. (A), 1999]: 
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                                                           Figure 3.1 

Both SD and CV are significantly larger in the 3- years old children than in 6-7 years 

old children, and this is larger in comparison with 11-14-years old children. The value 

of SD and CV of 11-14 years old children is very close to the value of young adults.  

Even after detrending, which can exclude the effect due to fatigue and speed change 

during the walk, variability is larger in younger children and smaller in older ones.  

 Also the temporal structure of gait is not fully developed in the children and in 

the oldest children the stride dynamics approaches the values observed in adults. 

Different features of the stride dynamics do not develop at the same time. 

 There is a change in the frequency spectrum with age. The power in the higher 

frequency band appears to be slightly increasing with age, conversely the power in the 

lower frequency band is largest in the youngest children. So the low-to-high spectral 

ratio, the indicator of stability, is larger in the older children and the gait dynamics 

becomes with age more stable. 

 Similar results provide autocorrelation measurements. The decay of the 

autocorrelation function also varied with age. The value τ63 rises from 2-3 strides in 3 

years old children to 5-6 strides in the 14 years old children, τ37 increases from 5-6 

strides to 19 ones [Hausdorff et al., 1999].  
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 The fractal scaling index α is similar for the children in the age 3-7 years, its 

value is α = 0.93+ 0.03 and decreases in older children (11-14eyars old) to 0.88 + 0.04 

[Hausdorff et al., 1999]. The mean α of the oldest children was closest to the value 

obtained in young adults. 

 In children, gait is over certain age ranges influenced with the body size - the leg 

length, height. The velocity of gait increases in the age of 6-7 years. Even after 

adjusting to these factors 

The above results are available (the dynamical measurements were normalized with 

respect to height). 

 

3.4. Analysis of Parkinson's disease, Huntington's disease and Amyotrophic lateral 

sclerosis 

Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral 

sclerosis (ALS) are neurodegenerative diseases, PD and HD are disorders of the basal 

ganglia and ALS is motor neuron disease. PD, HD and ALS display some common 

features of altered stride dynamics, as well as distinct ones. 

 A representative time series of this disorders and healthy controls are shown on 

Fig 3.2 [Hausdorff et al., 2000 (C)]: 

                        

 
 

Figure 3.2 
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 One common feature is the less speed of gait. This feature may by a general 

marker of neurodegenerative diseases, but it is not possible to distinguish among these 

disorders.  

 Stride-to-stride variability is increased in all three disorders. The average stride 

time is much longer for subjects with ALS compared with the control subject an also 

compared with that of subjects with HD and PD, in subjects with PD is the stride time 

similar as in control subjects. 

 The variability of the stride time is larger for all diseases. The value of CV and 

SD of the detrended time series are about twice as large in ALS and PD subjects 

compared with control, but in HD subjects this values become yet larger.  

 All measures of the fluctuation dynamics are most changed in subjects with HD 

compared with both healthy control and subjects with PD and ALS. Fractal scaling 

index α and autocorrelation decay time tended to be lower in ALS subjects compared 

with controls, nonstationarity index is similar. In subjects with PD is fractal scaling 

index lower than in controls, autocorrelation decay time is slightly larger than in 

controls and NSI is comparable with NSI of control subjects. 

 Changes are evident also when studying subjects with mild lower extremity 

impairment comparing with controls. Subjects with mild form of ALS have increased 

stride time and decreased autocorrelation decay time. Among HD subjects all measures 

of fluctuation magnitude and dynamics are significantly different compared with 

controls, except for NSI for which the difference is marginal. Among PD subjects the 

measures of fluctuation magnitude are significantly increased. 

 To evaluate any specifically parameters that characterize the three different 

diseases subjects with advanced ALS (HD, PD) are compared with the other groups 

having advanced disorders. Prominent features of advanced ALS are longer stride time 

and slightly increased NSI. Increased fluctuation magnitude, decreased memory and 

decreased NSI are markers of advanced HD.  

 In HD, the degree of impairment is measured by using the total functional 

capacity (TFC) score of United Huntington's Disease Rating Scale. Most impairment 

belongs to the value 0, and no impairment is equal to 13. The fractal scaling index α is 

linearly related to this degree of functional impairment. 
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4. Nonlinear structure of  human gait dynamics 

4.1. Human gait maturation 

4.1.1. Analysis of stride intervals and Fourier spectra 

 

Although our primary aim in this thesis is to understand the dynamical structure 

of the impaired gait during the neurodegenerative diseases it is of course interesting to 

analyze first how the gait changes in subjects with varying age. The effect of age on gait 

maturation has been studied for a long time [Gabell, Nayak, 1984], but essentially only 

a linear methods of analysis were used. 

The human body is build for motion. Forty percent of adult body mass is muscle 

with proportionally more in the lower extremities. Muscles and bones are motors and 

levers designed to allow movement in many planes. Muscles are necessary not only for 

propulsion but also for deceleration and shock absorption. Human locomotion also has 

idiosyncratic characteristics with unique aspects apparent in every individual. We can 

identify family and friends by their gaits. However, an individual’s gait also varies 

according to speed, mood, footwear and fatigue. Human locomotion is also affected by 

changes in development such as physiological processes affecting neuromotor control, 

growing and maturing body segments, variable rotation of limbs and joints about an 

axis of motion, and changes in posture. The attainment of locomotor skills is a 

complicated process dependent upon an intact neuromotor and musculoskeletal system.  

 Human develops all brain cells they will ever have by 20 weeks of intrauterine 

life. Interneurons appear and reproduce to interconnect brain cells until about age one. 

The  process of myelination takes several years and is completed in a cephalad to caudal 

(head to tail). There is much individual variation in the rate of development of 

neuromotor control. Early neuromotor maturation is manifested by the suppression of 

primitive reflexes or postural responses can reflect a disorder in the central or peripheral 

nervous system. Primitive reflexes are naturally present in the newborn and infant 

younger than 6 months. They are never normally obligatory or persistent; rather, infants 

move in and out of these patterns are gradually completely suppressed. Postural 

responses, incorporated naturally into movement and locomotion. The evolution of 

primitive reflexes and postural responses, also occurs proximal to distal. It takes several 

years for mature pattern to evolve. Characteristics of a mature gait pattern include a 
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narrow base of support, smooth movements with minimal oscillations of the center of 

gravity and reciprocal arm swing.            

Most practitioners agree a mature gait is present in normal children by age 5. 

However, after analyzing 186 normal children, Sutherland et al. [Sutherland et al., 

1988] concluded a mature gait pattern is well established in most children by age 3. The 

criteria they used included duration of single-limbe stance, walking velocity, cadence, 

step length and ratio of pelvic span to ankle spread. Nonetheless, subtle changes in the 

development of neuromuscular control and locomotor function continue well beyond 

age 3.  

Walking consists of a sequence of steps. These steps may be partitioned into two 

phases: a stance phase and swing phase.  

 

The stance phase is initiated when a foot strikes the ground and ends when it is lifted. 

The swing phase phase is initiated when the foot is lifted and ends when it strikes the 

ground again. The time to complete each phase varies with he stepping speed. A stride 

interval is the length of time from the start of one stance phase to the start of the next 

stance phase. 

 Analysis of the stride time dynamics may provide a window into the 

development of neuromuscular control in children. Given the apparent parallels between 

the immature gait of children and the unsteady gait of older persons and persons with 

neurological impairment [Forssberg, Johnels, Steg, 1984], along with the subtle 

continued development of neural control beyond age 3, the stride time dynamics may 

not be fully maturated at this age. We have therefore analyzed the development of 

mature stride dynamics using recurrence quantification analysis to determine at what 
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ages changes in gait dynamics occurs to compare the gait dynamics of children to those 

of adults. 

 The collection of stride intervals were kindly supplied by Dr. Jeff Haussdorf, 

Harvard Medical School, and were collected by the study of fifty boys and girls with 3-

14 years. These subjects walked at their self-determined, normal pace for 8 min around 

a 400 m running track. All wore their own shoes or sneakers. Representative examples 

of effects of age on the stride time fluctuations are shown in Fig.1-12.  

As can be seen the stride time of the oldest childs is relatively constant 

throughout the walk. In contrast, for the youngest children the local average appears to 

change from time to time. Quantitatively this property of gait maturation is shown in 

Fig. 18a, where the age dependence of  mean value of stride intervals is shown. We 

have further analyzed age dependence of standard deviation (Fig. 18b.), this quantity is 

largest for the yongest children and decreases with age. Standard deviation characterizes 

the fluctuation and nonstability of gait, so the gait becomes more stable with age.  

Together with a stride intervals we have for all subjects performed fast Fourier 

transform of time series (Fig.1b.-Fig.12b). We have shown power spectra in the log-log 

scale, in order to determine the fractal scaling exponent α power ~ 1⁄fα, as a slope of 

linear fit. These values are summarized in the Fig. 17. As can be seen the fractal scaling 

exponent is largest for oldest subject, and is almost linearly age dependent. The value 

for the oldest subject is close to the value of fractal scaling exponent for the Brown 

noise.  

 

 

4.1.2. Reconstruction of dynamical system behind the stride dynamics 

 One of the fundamental questions in neuromuscular control research is 

Bernstein’s historical (1935) “degrees of freedom problem”: (N. Bernstein, 1935) How 

are the very many degrees of freedom of the human body coordinated to produce 

smooth, rational movements ? Human locomotion is known to be a voluntary process, 

but it is also regulated through a network of neurons called “central pattern 

generator”(CPG), capable of producing a syncopated output. The early [Bay, Hermani, 

1987] nonlinear dynamical models of CPGs for gait assumed that a single nonlinear 

oscillator has to be used for each limb participating in the locomotion process. 

Therefore a quadraped required the coupling of four nonlinear oscillators to determine 
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the correct phase relations among the four legs in order to distinguish between various 

modes of locomotion, that is , walking trotting, cantering and galloping. More recent 

dynamical models [Taga, 1996], using the property of synchronization of nonlinear 

dynamical systems, allows for neurons within an assembly to become enslaved to a 

single rhythmic muscular activity. Further models assumes that the central nervous 

system is coupled to the moto-control system, and together they control the locomotion 

of the gait cycle. According to these studies seems that the global locomotor dynamics 

is effectively quite low dimensional and, if predominately deterministic, should be 

expected to be well modeled by e.g. above mentioned dynamical system with a few 1, 4 

or 10 state space dimensions. While not specifying precisely how it occurs, these results 

indicates that human walking involves a substantial “collapse of dimension” from the 

very high dimensional state space of all possible movements to an approximately 4-10 

dimensional subspace. 

 Our aim is therefore to analyze the correctness of this assumption on the large 

set of human walking data. 

 The philosophy behind the theory of dynamical systems is based on the 

concept that the dynamics of multidimensional system can be recreated and predicted 

from a single history of anyone of its observable output variables [Takens, 1981]. Using 

time delayed copies of this observable we can reconstruct the phase space of the 

dynamical system. Mutual information function can be used to determine the “optimal” 

value of the time delay for the state space reconstruction, as first proposed in  by Fraser 

and Swinney [Fraser, Swinney, 1986]. The idea is that a good choice for the time delay 

T is one that, given the state of the system X(t), provides maximum new information 

with measurement at X(t+T). Mutual information is the answer to the question, "Given 

a measurement of X(t), how many bits on the average can be predicted about X(t+T)?" 

A graph of I(T) starts off very high (given a measurement X(t), we know as many bits 

as possible about X(t+0)=X(t)). As T is increased, I(T) decreases, then usually rises 

again. It is suggested that the value of time delay where I(T) reaches its first minimum 

be used for the state space reconstruction. 

The “False Nearest Neighbors” (FNN) is a method of choosing the minimum 

embedding dimension of a one-dimensional time series, suggested by Kennel et al. 

[Kennel, Brown, Abarbanel, 1992]. This method finds the nearest neighbor of every 

point in a given dimension, then checks to see if these points are still close neighbors in 

one higher dimension. The percentage of FNN should drop to zero when the appropriate 
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embedding dimension has been reached. While the FNN method is intuitive and easy to 

implement, it is not straightforward to use and interpret. Among some other things, the 

FNN method requires setting two threshold values to some rather arbitrary values, 

which are then used to determine the false neighbors. In addition, FNN method is 

sensitive to the sampling rate of the time series. 

For each vector X = (x1, x2, x3, ...xn) in the time series find its nearest neighbor 

Y = (y1, y2, y3, ..., yn) in an n-dimensional space. Iterate both points and compute R = | 

x(n+1) - y(n+1) |. This distance R is essentially a distance between the images of 

vectors X and Y. One may also think of y(n+1) as a predictor for x(n+1), so R is then 

the prediction error. The idea is that when  the attractor is completely unfolded in n 

dimensions,  the distance R between the (n+1)st components of vectors X and Y will be 

small. To detect if the nearest neighbor just found is false, we compare R (the prediction 

error) with the errors that would have been made by a trivial predictor. If the error made 

by the trivial predictor is less than R, we register the nearest neighbor as “false”. The 

trivial predictor simply uses xn as a predictor x(n+1). So, more formally,  

if  | x(n+1) - y(n+1) | = | x(n+1) – x(n) |,  

the nearest neighbor is labeled as “false”.  

 We have calculated time delay using AMI method and embedding dimension 

using FNN method for all 50 subjects. How these quantities depend on the age of 

subjects is shown in Fig.13-16. Average intrinsic time lag was about 4, and embedding 

dimension 40. The embedding dimension was calculated also for time delay = 1, but the 

corresponding embedding dimension was essentially the same. We can therefore 

conclude that theoretical analysis of a large set of experimental data do not support the 

idea that there is a substantial “collapse of dimension” and that there is a low-

dimensional dynamical system behind the human locomotion as suggested from some 

previous models or analyses. It should be stressed (see e.g. Fig. 15) that the embedding 

values are rather scattered (from about 5 to about 60) which mean that the noise of the 

unknown origin play significant role in the formation of stride interval temporal 

structure. It is interesting to note that obtained values of embedding dimension are close 

to the value of 37 corresponding to Brownian motion. 
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4.1.3. Recurrence quantification analysis  

 

Recurrence plots are extremely useful in visualization of natural time correlation 

structure of the time series. With RPs we can thus easily locate a wealth of recurring 

patterns. Moreover we can visualize and detect trends, abrupt changes or drifting 

dynamics. Recurring patterns appear in the RP as diagonal line segments, parallel to the 

main diagonal. The representative collection of recurrence plots is shown in Figs. 1.c.-

12.c. For comparative purposes we have also calculated  randomized (formed by 

randomly choosing a pair of points from the data chain and exchanging positions of 

such points, and repeating this procedure N times, where N is the number of all stride 

intervals) recurrence plots as shown in Figs. 1.d.-12.d. This randomization or shuffling 

preserves the statistical distribution of the data but changes correlation between points 

in the data chain and is devoid of coherent phase relationship. For quantitative 

interpretation of RPs  we have for all 50 subjects calculated all standard RQA 

quantificators as shown in Fig. 17.a.-h. For the quantitative interpretation of these plots 

we have used recurrence quantification analysis (RQA) method which computes several 

quantitative variables for each plot, including standard statistics like mean value and 

standard deviation Other statistics, unique to recurrence plots, are defined: The “Percent 

recurrence” variable quantifies the percentage of the plot covered by recurrent points, 

and reflects the periodicity in the data. “Percent determinism” quantifies the percent of 

recurrent points that form upward diagonal lines of 4 or more recurrent points, as 

opposed to being randomly dispersed. “Line entropy” addresses the complexity of the 

RP, in that the more complex the structure of the dynamics of the recurrence plot, the 

more bits of information are required to describe it, and hence the higher the entropy. 

“Max. Line“  is counted as the average of the lengths of diagonal lines and it is the 

mean prediction time. The inverse of Max. Line is correlated with Lyapunov exponent. 

The value “Trend“ is the measure of the fading recurrence points away from the mean 

diagonal. 

 

 When visually inspecting obtained RPs  we can see that the distribution of the 

dots varies for different distances from the main diagonal. From the structure of RPs  is 

clear that the analyzed gait maturation data are mixture of high-dimensional (unknown) 

deterministic and stochastic (noise) processes. The presence of short lines (destroyed in 
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the randomized plots, compare Figs. 11.c. and 11.d.) parallel to the main diagonal in 

some plots mirrors the deterministic character of the system and reflects presence of so-

called "unstable periodic orbits", that are embedded in the chaotic attractor of a 

deterministic system.  
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Fig. 1. (a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 

 

          
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 2. (a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 

 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 3. (a.) Time dependence of stride interval 

 
(b.) Power Fourier spectrum of stride intervals 

         
(c.) Recurrence plot of stride intervals 

 
(d.) Randomized recurrence plot 
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Fig. 4. (a.) Time dependence of stride interval 

 
(b.) Power Fourier spectrum of stride intervals 

        
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 

 



 - 34 - 

0 100 200 300 400 500

0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5

 

st
rid

e 
in

te
rv

al
 [s

]

stride number

Age = 87 months
Mean = 0.915 s
StDev = 0.039 s

 

1E-3 0,01 0,1
10-12

10-11

1x10-10

1x10-9

1x10-8

1x10-7

1x10-6

1x10-5

1x10-4

1x10-3

1x10-2
1x10

-1

 

α = 0,79 ± 0,05

log f

lo
g 

S
(f

)

 
Fig. 5. (a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 

 

           
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 6. (a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 

 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 7. (a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 

 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 8. (a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 

 

        
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 9. (a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 

 

          
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 10.(a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 

 

          
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 11.(a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 

 

           
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 12.(a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 

 

            
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 13.  Age dependence of embedding 
dimension, time lag = 1 

Fig. 14. Age dependence of time lag 
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Fig. 15. Age dependence of embedding dimension, 
time lag is intrinsic value of time series 

Fig. 16. Dependence of embedding dimension on 
time lag 
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Fig. 17. Age dependence of scaling index a 
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Fig. 18. (a.) Mean of the stride intervals (b.) Age dependence of St. Deviation 
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(c.) Age dependence of Recurrence (d.) Age dependence of Determinisms 
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(g.) Age dependence of Trend (h.) Age dependence of Max. Line 
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4.2. Human gait during neurodegenerative diseases (Parkinson,   

       Huntington, and amyotrophic lateral sclerosis) 

4.2.1. Analysis of stride intervals and Fourier spectra 

 

Disorders of the basal ganglia are associated with characteristic changes in gait. 

Patients with Huntington’s disease (HD) often display an uncoordinated, lurching walk 

[Koller, Trimble, 198], while the gait of subjects with Parkinson’s disease (PD) is 

marked by slowness, postural instability, small shuffling steps, and difficulty with 

initiation [Knutsson, 1972]. 

On the other hand, amyotrophic lateral sclerosis (ALS) is a disorder primarily 

affecting the motoneurons of the cerebral cortex, brain stem, and spinal cord. Gait 

typically becomes abnormal during the course of the disease. A decreased walking 

velocity has been documented in ALS [Goldfarb, Simon, 1984]. However, it is 

unknown whether the loss of motoneurons also perturbs the stability and stride 

intervals. 

Our aim in this part of the thesis is to used methods of nonlinear dynamics to 

enhance the understanding of motor control and might also prove beneficial in 

monitoring disease progression and in assessing potential therapeutic interventions. 

The collection of stride intervals for all diseases was again kindly supplied by 

Dr. Jeff Haussdorf, Harvard Medical School. Representative examples for ALS, PD, 

HD, and control healthy subjects (CO), are shown in Figs. 26.-31., Figs. 33.-38, Figs. 

40.-45, and Figs. 19.-24, respectively.  

For ALS data two features of gait rhythm and stride intervals are visually 

apparent. First, the average stride time, the time cycle duration, is much longer for the 

subject with ALS compared with CO subjects. Second, the stride time varies from one 

stride to the next to a much larger extent in the ALS subject.  

For PD subjects the stride-to-stride fluctuations about the mean are larger than 

that of CO subjects, and these fluctuations are larger in HD subjects. In contrast, the 

mean values of each time series are similar. Subjects with HD and PD tended to have 

longer gait cycles and spend more time the feet in contact with the ground. 

One possible explanation for increased gait variability, at least in the PD 

subjects, is that it is a byproduct of lower gait speed. Indeed, many of the gait changes 

associated with PD are related to diminished ability to generate normal gait stride length 
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and velocity. However no significant increase in stride intervals was observed in healthy 

elderly subjects although they walked significantly slower than young controls. 

As can be seen from the Figs. 26.b.-31b, 33b-38b, 40b-45b,19b-24b, we have 

also performed spectral analysis of stride time intervals, and shown power spectra in the 

log-log scale, in order to determine the fractal scaling exponent α.  

 

4.2.2. Reconstruction of dynamical system behind the stride dynamics 

 

Similarly like for gait maturation we have calculated time lags using AMI 

method and embedding dimension using FNN method for all PD, HD, ALS and CO 

subjects. The pairs (time lag, dimension) are shown in the Fig. 48. Average intrinsic 

time lag was again about 4, but the  embedding dimension was in average significantly 

lower that for young subjects - about 20. Nevertheless a substantial “collapse of 

dimension” was again not observed and it is not clear if  the noise is not such a 

significant in this case, and therefore is necessary to perform more detailed study to 

answer this interesting question.  Again large differences in embedding dimensions 

were observed in the same group and also among different various groups. If we have 

used time lag = 1, the embedding dimension changed only very slightly.  

 

4.2.3. Recurrence quantification analysis 

 

Together with stride intervals and their power Fourier spectra we have again 

calculated also recurrence plot for original stride intervals series as well as for randomly 

shuffled data.  

Two-dimensional recurrence plots can display ”low-distance” systemic 

determinism in higher-dimensional stride interval data. The existence of horizontal 

strips in a recurrence plot is indicative of deterministic structure, possibly chaos. 

Randomly generated time series data, or even structured data sets, with the order of 

pairs shuffled so that they still have an equivalent frequency distribution to the original 

series, will show no patterned structure when plotted as recurrence plots.  



 - 43 - 

The deterministic content of the data was further analysed using data shuffling 

(global randomization). The more deterministic is the signal, the more is the plot 

changed.  

As can be seen in some recurrence plots are present short lines parallel to the 

main diagonal. They corresponds to sequences (i, j), (i+1, j+1), ..., (i+k, j+k) such that 

the piece of trajectory x(j), x(j+1),...,x(j+k), is close to trajectory x(i), x(i+1), ..., x(i+k). 

The length of the lines is thus related to the inverse of the largest Lyapunov exponent. 

The presence of these short segments mirrors the deterministic character of the system 

and it follows directly from the presence of so-called unstable periodical orbits that are 

embedded in the chaotic attractor of a system. If the x(i) were randomly chosen rather 

than coming from a dynamical system, there would be no such lines. 

HD patients exhibited more gait variability than PD subjects. This may reflect 

the impairment of different neural pathways involved in stride-to-stride regulation, 

consistent with numerous differences in the gait of PD and HD subjects. Alternatively, 

the origin of the increased variability may be the same in PD and HD and the 

differences are merely a matter of degree.  Although the underlying pathology of each 

disease involves different portions of the basal ganglia, both diseases share some 

common sequel that may be the primary reason for the impairment in regulation of gait 

timing.  

It is likely that complex dynamics of the gait stride intervals from numerous 

coupled control systems and feedback loops that regulate the gait cycle on different time 

scales. Neurodegenerative diseases may have a profound impact on many of the 

interacting neural and endocrine mechanisms that regulate gate. 

These results suggests that the distinctive patterns evident in RPs of stride 

intervals, are empirically correlated with the age and health of the studied 

subjects, as they diagrammatically represent the complex dynamical interaction of 

the neuro-muscular systems. These findings suggest that recurrence plots of stride 

interval variability, show patterns which vary characteristically, for different types 

of people, in the different states, able to differentiate healthy or ill, old and young 

subjects.  

Our further goal is to evaluate if recurrence plots of stride intervals of subjects 

with various disorders actually have potential as a clinical diagnostic tool.   
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Fig.19.(a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 
 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.20 (a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 
 

          
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.21.(a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 
 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.22. (a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 
 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.23. (a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 
 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.24. (a.) Time dependence of stride interval (b.) Power Fourier spectrum of stride intervals 
 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 25. (a.) Mean of the stride intervals (b.) Standard deviation of stride intervals 
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(c) Recurrence of healthy people (d.) Determinism of heathly people 

 

0 5 10 15 20 25
-1

0

1

2

3

4

5

6

7

 

 

 

R
at

io

 CO

 

0 5 10 15 20 25

0

1

2

3

4

5

 

 

 

E
nt

ro
py

 CO

(e.) Ratio of healthy people (f.) Entropy of healthy people 
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(g.) Trend of healthy people (h.) Max. Line of healthy people 
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Fig.26. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 
 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig27. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 
 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.28. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 
 

  
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.29. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 
 

  
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 30 (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 
 

       
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig. 31 (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 
 

     
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.32. (a.) Mean of the stride intervals (b.) St. Deviation of stride intervals of ALS 
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(c.) Recurrence of ALS (d.) Determinism of ALS 
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Fig.33. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 

 

           
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.34. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 

 

       
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.35. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 

 

            
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.36. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 

 

           
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.37. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 

 

          
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.38. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 

 

          
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.39. (a.) Mean of the stride intervals (b.) St. Deviation of stride intervals 
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(c.) Recurrence of PD (d.) Determinism of PD 
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Fig.40. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 
 

           
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.41. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 

 

           
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.42. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 
 

          
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.43. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 
 

          
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.44.(a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 
 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.45. (a.) Time dependence of stride interval (b.) Power fourier spectrum of stride intervals 
 

         
(c.) Recurrence plot of stride intervals (d.) Randomized recurrence plot 
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Fig.46. (a.) Mean of stride intervals (b.) St. Deviation of stride intervals 
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(c.) Recurrence of HD (d.) Determinism of HD 
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Fig. 47. Embedding dimension in dependence of time lag 
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Fig. 48. (a.) Scaling index of PD 
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CONCLUSION 

 

 This study compares human gait dynamics of children, healthy adults and people 

with neurodegenerative diseases (amyotrophic lateral sclerosis, Huntington’s disease 

and Parkinson’s disease). 

 The not fully developed locomotor system in children provides changes in gait 

dynamics. Gait in the youngest children (3-4 years old) is more unstable, with higher 

fluctuations, in contrast the gait in 13-14 years old children is constant. Also changes in 

temporal structure measurements are age dependent.The fractal scaling index increases 

with age and for the oldest children is close to the value of adult people. 

 From the analysis of recurrent plots and recurrent quatification analysis we can 

concludes that gait maturation data are mixture of high dimensional daterministic and 

stochastic processes. With maturation signals become more stochastic.  

 Gait of people with neurodegenerative diseases shares some common features 

and is distinguishable from the gait of healthy adult people. There are also distinct 

attributes among people with ALS, PD and HD which are caused by impairement of 

different parts of nervous system. 

 For people with neurodegenerative disease is characteristic increased 

nonstability, less speed and longer stride intervals. The presence of recurrent patterns in 

their recurrent plots indicates deterministic structure.  

Recurrent plots of stride intervals are empirically correlated with the age and 

health of the studied subjects, as they diagrammatically represent the complex 

dynamical interaction of the neuro-muscular systems. These findings suggest that 

recurrence plots of stride interval variability, show patterns which vary 

characteristically, for different types of people, in the different states, able to 

differentiate healthy or ill, old and young subjects.  
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RESUMÈ 

Predložená práca sa zaoberá porovnávaním dynamiky l udskej chôdze detí, 

zdravých dospelých l udí a l udí s vybranými neurodegeneratívnymi chorobami. 

Dôsledkom poškodenia jednotlivých castí nervovej sústavy zodpovedných za 

kontrolu pohybu je zmena v dynamike chôdze. Metóda rekurentných obrázkov 

umožnuje rozlíšit medzi stavom zdravia a choroby. Prítomnost  rekurentných vzorov u 

l udí s neurodegeneratívnymi chorobami poukazuje na deterministický charakter 

systému v porovnaní so stochastickým systémom u zdravých l udí. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




