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ABSTRACT. A test of the equality of the first h eigenvectors of covariance
matrices of several populations is constructed without the assumption that the
sampled distributions are Gaussian. It is proved that the test statistic is asymp-

totically chi-square distributed. In this general setting, an explicit formula for
column space of the asymptotic covariance matrix of the sample eigenvectors is
derived and the rank of this matrix is computed. An essential assumption in
deriving the asymptotic distribution of the presented test statistic is the exis-
tence of the finite fourth moments and the simplicity of the h largest eigenvalues
of population covariance matrices, which makes possible to use the formulas for

derivatives of eigenvectors of symmetric matrices.
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1. Introduction

Principal component analysis looks for small number h of linear combina-
tions p̂′i(x− x) of the observed data vector x, which can be used to summarize
observed values. Since the sample vector x can be difficult to interpret, these
linear combinations may help in discovering some overall properties of the orig-
inal variables. For example, if in x = (x1, . . . , xn) the coordinates x1, . . . , xh
denote some physical properties and xh+1, . . . , xn some accompanying variables
(time, space position, etc.), then one could ask whether p̂1, . . . , p̂h lie in the
space consisting of (x1, . . . , xh, 0, . . . , 0)

′, because this would mean the relevant
part of the variability of the data can be attributed to the physical quantities.
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The problem of testing of null hypotheses on the set inclusion between a fixed
linear space and the linear space spanned by m eigenvectors of a limiting matrix
(including the covariance matrix as a special case) is studied in [16] and [17].

Asymptotic distribution of the sample total eigenprojection P̂ =
∑
p̂j p̂

′
j is in the

case of the correlation matrix investigated by S c h o t t in [14], who presents in
this setting also tests of the null hypotheses H0: P = P0 and H0: P0P = P0 on
the population total eigenprojection P =

∑
pjp

′
j for sampling from the normal

population.

Suppose that the same variables x1, . . . , xk are being measured in q > 1
statistical populations. Reduction of dimensionality simultaneously in these q
groups can be viewed as a situation when the subspace spanned by the first h
principal components is the same for all the groups. Thus if P (i) denotes the
total eigenprojection corresponding to the h largest eigenvalues of the covariance
matrix of the ith population, verification of this property amounts to testing the
hypothesis H0: P

(1) = · · · = P (q), which is investigated in the normal setting in
[13], for the case h = k is this problem investigated by F l u r y in [4] and [2].

Another problem associated with the overall picture of these q populations is
the determination of the dimension r of the reduced space which retains most
of the variability within all groups. In this context a test of the hypothesis H0:
rank(P (1) + · · ·+ P (q)) = s is under normality assumptions presented in [15].

If the observations from the q populations are summarized by linear combina-
tions, it is reasonable to use the same number h of the combinations because of
their coordinate-wise comparison from the multivariate point of view. If the data

from the ith population are summarized by linear combinations p̂
(i)′

j (X −X
(i)
),

j = 1, . . . , h, then the equalities p̂
(1)′

j = · · · = p̂
(q)′

j , j = 1, . . . , h mean that the
hidden mechanism producing an essential part of the variability of the data is
the same for all the q populations. This can be verified by testing that the viola-
tion of these equalities is not statistically significant, the null hypothesis in this
case is that the eigenvectors of the population covariance matrices correspond-
ing to their h largest eigenvalues, are common to all the q populations. This
hypothesis, denoted here by (2.13), is in [3] called the partial common principal
components model, its testing is investigated ibidem in the Gaussian case.

One of the important aspects of the principal component analysis is its role in
the multivariate description of the data. This in the multisample case includes
the task of finding out how similar the q groups are with respect to their overall
features. This could mean that the principal axes of the concentration ellipsoid,
corresponding to the h largest eigenvalues, are common to the all q popula-
tions. In terms of eigenvectors this property means that the eigenvectors of the
population covariance matrices corresponding to their h largest eigenvalues, are
common to all the q populations, which is again the hypothesis of partial com-
mon principal components. The aim of this paper is to construct an asymptotic
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test of this hypothesis without the normality assumptions. Similarly as in [12],
an essential condition imposed in this paper is the distinctness of eigenvalues of
covariance matrices, which is used in establishing the asymptotic distribution of
the proposed test statistic.

2. Assumptions and the main results

It is supposed throughout the paper that 1 ≤ h ≤ k are fixed integers. Let
X be a k-dimensional random vector and Σ denote its covariance matrix. Its
spectral decomposition

Σ = P diag(λ1, . . . , λk)P
′ , λ1 ≥ · · · ≥ λk , PP ′ = Ik , (2.1)

P =
(
p1, . . . , pk

)
, pj = (p1j , . . . , pkj)

′ , j = 1, . . . , k, (2.2)

where Ik is the k × k identity matrix. The following conditions will be used.

(RC I) The first h eigenvalues of the matrix Σ are simple. Thus if h < k,
then λ1 > · · · > λh+1 ≥ 0 and if h = k, then λ1 > · · · > λk > 0.

(RC II) All mixed moments of the fourth order of coordinates of the random
vector X are finite.

For k×k matrix A with elements aij, the columns ofA stacked one underneath
the other will be denoted by vec(A), and v(A) denotes its elements not above
diagonal, i.e.,

v(A) = (a11, a21, a31, . . . , ak1, a22, a32, . . . , ak2, . . . , akk)
′ . (2.3)

Throughout the paper ej = (0, . . . , 1, . . . , 0)′ denotes the jth basis vector from
R

k, ⊗ denotes the Kronecker product and the superscript + denotes the Moore-
Penrose inverse of the matrix. For column vectors X1, . . . , Xn let

X =
1

n

n∑

m=1

Xm , Sn =
1

n

n∑

m=1

(Xm −X)(Xm −X)′

denote the sample mean and the sample covariance matrix, respectively.

������� 2.1� Suppose that (RC I) and (RC II) hold.

(I) There exist a neighbourhood U ⊂ R
k(k+1)/2 of the point v(Σ) and a contin-

uously differentiable mapping P̃ = P̃
(
v(Σ∗)

)
of the argument v(Σ∗) ∈ U , taking

values in the set of k× h matrices with unit-norm orthogonal columns such that
P̃
(
v(Σ)

)
= (p1, . . . , ph), where P is the matrix from the spectral decomposition

of Σ, and for every symmetric k × k matrix Σ∗ with v(Σ∗) ∈ U

P̃
(
v(Σ∗)

)′
Σ∗P̃

(
v(Σ∗)

)
= Λ∗ , Λ∗ = diag(λ∗1, . . . , λ

∗
h) ,

with λ∗1 ≥ · · · ≥ λ∗k denoting the eigenvalues of Σ∗.
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(II) Suppose {Xm}∞m=1 are i.i.d. random vectors with distribution L (Xi) =
L (X). Let

(p̂1, . . . , p̂h) = P̃
(
v(Sn)

)
(2.4)

denote the first h eigenvectors of the sample covariance matrix chosen in the
continuous way, described in (I). Then

√
n
(
vec(p̂1, . . . , p̂h)− vec(p1, . . . , ph)

) −→ Nhk(0,Mh) (2.5)

in distribution. The covariance matrix of this normal distribution

Mh = ΓW Γ′ , Γ′ = (Γ′
1, . . . ,Γ

′
h) (2.6)

where W = var{vec( (X − µ)(X − µ)′)} and (cf. (2.1))

Γj =
(
vec(Peje

′
1Cj) , vec(Peje

′
2Cj) , . . . , vec(Peje

′
kCj)

)′
,

Cj = (λjIk − Σ)+ = P diag
(

1
λj−λ1

, . . . , 1
λj−λj−1

, 0, 1
λj−λj+1

, . . . , 1
λj−λk

)
P ′ .
(2.7)

In the case h < k− 1 the previous theorem allows the covariance matrix Σ to
be singular. We remark that another form of the asymptotic covariance matrix
is presented in [6, Theorem 3.1.9, p. 299] (this Theorem 3.1.9 is formulated for
h = k and therefore requires the non-singularity of Σ). An advantage of the
formulas (2.6) and (2.7) is that they yield the explicit formula

Mh,(i,j) = ΓiWΓ′
j (2.8)

for asymptotic covariance of the eigenvectors p̂i, p̂j.

The previous theorem is based on the differentiability of P̃ . Therefore one
could ask whether the value of the eigenvectors computed in a particular case
is compatible with such a condition. Since the eigenvectors corresponding to a
simple eigenvalue form a one-dimensional linear subspace, to achieve this differ-
entiability it is enough to find a rule which chooses the eigenvectors in a unique
way continuous at v(Σ). To ensure this, the quoted [6, Theorem 3.1.9] requires
that the ith coordinate pi(i) > 0 for i = 1, . . . , k. However, this assumption is
unnecessarily restrictive, because the convergence (2.5) holds also for covariance
matrices Σ with pi(i) = 0, like Σ = diag(1, 2). Instead of this rule we therefore
propose to choose the eigenvectors pi in such a way that

pjii > 0 , ji = min
{
j : |pji| = max{|p1i|, . . . , |pki|

}
, (2.9)

because this choice makes the function v(Σ) −→ pi continuous provided that
the eigenvalue λi is simple.

Although the eigenvalues are in (I) of the previous theorem chosen in a specific
way, this does not hinder an application of this theorem in the further text,
because the statistic proposed in Theorem 2.4 remains the same both for a given
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value of the sample eigenvector and for its value obtained by the multiplication
with −1.

In deriving algebraic properties of the asymptotic covariance matrix (2.6) the
following assertion will be useful.

������� 2.2� Assume that the regularity condition (RC II) holds. If X pos-
sesses a density with respect to the Lebesgue measure, then both the covariance
matrix Σ and the matrix

V = V (X) = var
{
v
(
(X − µ)(X − µ)′

)}
, µ = E(X) , (2.10)

are non-singular.

To avoid a confusion with the previous notation, in the next theorem the

symbol e
(h)
j = (0, . . . , 1, . . . , 0)′ denotes the jth basis vector from R

h. The

symbol M (A) will denote the linear space generated by the columns of the
matrix A and the symbol 〈G 〉 the linear space generated by the set G.

������� 2.3� Suppose that (RC I), (RC II) hold and both the covariance ma-
trix Σ and the matrix (2.10) are non-singular. Then for the matrix Mh defined
by means of (2.6), (2.7) the set equality

M (Mh) =
〈
{ e(h)j ⊗ pr − e(h)r ⊗ pj : 1 ≤ j < r ≤ h}

∪ {e(h)j ⊗ pr : 1 ≤ j ≤ h , h+ 1 ≤ r ≤ k }
〉 (2.11)

holds. All the vectors appearing on the right hand side of (2.11) are linearly

independent, if 1 ≤ h < k then rank(Mh) = hk − h(h+1)
2 and if h = k, then

rank(Mh) =
(k−1)k

2
.

If (RC I), (RC II) hold andX possesses a density with respect to the Lebesgue
measure, then according to Theorem 2.2 the assumptions of Theorem 2.3 are
fulfilled. Hence in this case the formulas for the rank and the column space of
the asymptotic covariance matrixMh given in Theorem 2.3 hold and the column
space M (Mh) is not influenced by the matrix W appearing in (2.6).

The main topic of this paper is testing of the null hypothesis that the eigenvec-
tors corresponding to the h largest eigenvalues of covariance matrices of k-dimen-
sional populations are common to all underlying distributions. A test statistic
for testing this hypothesis and its asymptotic distribution are presented in the
next Theorem 2.4. To describe the setting of this problem, suppose throughout
the rest of this paper that q > 1, 1 ≤ h < k are fixed integers and for i = 1, . . . , q

the random sample X
(i)
1 , . . . , X

(i)
ni of size ni is drawn from a distribution with

a k × k non-singular covariance matrix Σ(i), the random vector X
(i)
1 and its

covariance matrix fulfil the assumptions of theorems 2.1, 2.3 and these random
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samples are independent. Thus for i = 1, . . . , q the covariance matrix Σ(i) has
eigenvalues

λ
(i)
1 ≥ · · · ≥ λ

(i)
k > 0 , (2.12)

where the inequalities λ
(i)
1 > · · · > λ

(i)
h+1 hold and

Σ(i) = P (i) diag(λ
(i)
1 , . . . , λ

(i)
k )P (i)′ , P (i) =

(
p
(i)
1 , . . . , p

(i)
k

)
, P (i)P (i)′ = Ik .

Since the unit-length eigenvectors are uniquely defined up to the multiplication

with −1, the null hypothesis of partial common principal components p
(1)
j =

· · · = p
(q)
j , j = 1, . . . , h, is equivalent to

p
(1)
j p

(1)′

j = · · · = p
(q)
j p

(q)′

j , j = 1, . . . , h . (2.13)

Further it is assumed for all i that the vector X
(i)
1 has all mixed moments of the

fourth order finite and the covariance matrix (cf. (2.3))

V (i) = V (X
(i)
1 ) = var

{
v
(
(X

(i)
1 − µ(i))(X

(i)
1 − µ(i))′

)}
(2.14)

is non-singular (here µ(i) = E(X
(i)
1 )). Suppose further that S

(i)
ni denotes the

sample covariance matrix of the random sample from the ith population and

S
(i)
ni = P̂ (i) diag(λ̂

(i)
1 , . . . , λ̂

(i)
k )P̂ (i)′ ,

P̂ (i) =
(
p̂
(i)
1 , . . . , p̂

(i)
k

)
, P̂ (i)P̂ (i)′ = Ik , λ̂

(i)
1 ≥ · · · ≥ λ̂

(i)
k .

(2.15)

Estimate the covariance matrix (2.6) from the ith sample by the estimate

M̂
(i)
h = Γ̂(i)Ŵ (i)Γ̂(i)′ , Γ̂(i)′ = (Γ̂

(i)′

1 , . . . , Γ̂
(i)′

h ) , (2.16)

Γ̂
(i)
j =

(
vec(P̂ (i)eje

′
1Ĉ

(i)
j ) , vec(P̂ (i)eje

′
2Ĉ

(i)
j ) , . . . , vec(P̂ (i)eje

′
kĈ

(i)
j )

)′
,

Ĉ
(i)
j = (λ̂

(i)
j Ik − S

(i)
ni )

+ ,

(2.17)

Ŵ (i) = 1
ni

ni∑

m=1
Yi,mY

′
i,m − Y iY

′
i , Yi,m = vec

(
(X

(i)
m −X(i))(X

(i)
m −X(i))′

)
,

Yi =
1
ni

ni∑

m=1
Yi,m , X(i) = 1

ni

ni∑

m=1
X

(i)
m .

Now define for p1, . . . , ph ∈ R
k the block diagonal matrix by the formula

∂
(
p1, . . . , ph

)
= diag

(
D+

k ∂ (p1), . . . , D
+
k ∂ (ph)

)
, ∂ (p) = (p⊗ Ik) + (Ik ⊗ p) .

(2.18)
Here Dk is the duplication matrix, i.e., according to [8, (5), p.49], the equality

v(A) = D+
k vec(A) (2.19)
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holds for every symmetric k × k matrix A. Obviously

D+
k =

(
B′

1 , . . . , B
′
j , . . . , B

′
k

)′
, Bj =

(
e
(k2)
(j−1)k+j, e

(k2)
(j−1)k+j+1, . . . , e

(k2)
jk

)′
.

(2.20)

Use (2.18) and put ∂
(
p1, . . . , ph

)
= diag

(
D+

k ∂(p1), . . . , D
+
k ∂(ph)

)
. To con-

struct a test statistic for testing the hypothesis of partial common principal
components, assume that

Ψ̂
(i)
h = ∂

(
p̂
(i)
1 , . . . , p̂

(i)
h

)
M̂

(i)
h ∂

(
p̂
(i)
1 , . . . , p̂

(i)
h

)′
, Ψ̃ =

q∑

i=1

âiΨ̂
(i)+
h , (2.21)

where âi =
ni

n , n = n1 + · · ·+ nq. Employ the spectral decomposition

Ψ̃ =

ϑ∑

j=1

λ̃j p̃j p̃
′
j , λ̃1 ≥ · · · ≥ λ̃ϑ , ϑ =

k(k + 1)

2
h , p̃′ip̃j = δi,j ,

where δi,j stands for the Kronecker delta and put

π =

r∑

j=1

p̃j p̃
′
j , Ψ =

r∑

j=1

λ̃j p̃j p̃
′
j , Ψ

(i)

h = π Ψ̂
(i)+
h π , r = hk − h(h+ 1)

2
.

(2.22)

������� 2.4� Suppose that {p(i)j }kj=1 are eigenvectors of Σ(i), i.e. (cf. (2.12))

Σ(i)p
(i)
j = λ

(i)
j p

(i)
j , j = 1, . . . , k . (2.23)

In accordance with (2.15) let

τ
(i)
h =

(
v(p

(i)
1 p

(i)
1

′)′, . . . , v(p(i)h p
(i)
h

′)′
)′
, τ̂

(i)
h =

(
v(p̂

(i)
1 p̂

(i)
1

′)′, . . . , v(p̂(i)h p̂
(i)
h

′)′
)′
,

τ = Ψ
+

q∑

i=1
âiΨ

(i)

h τ̂
(i)
h .

Define the test statistic by the formula

Zn1,...,nq
=

q∑

i=1

ni(τ̂
(i)
h − τ)′ Ψ

(i)

h (τ̂
(i)
h − τ).

If τ
(1)
h = τ

(2)
h = · · · = τ

(q)
h then the distribution of Zn1,...,nq

is asymptotically chi-

squared with (q − 1)
(
hk − h(h+1)

2

)
degrees of freedom as n1 → ∞, . . . , nq → ∞ .

Since the hypothesis of the partial principal components is equivalent to the

equalities τ
(1)
h = τ

(2)
h = · · · = τ

(q)
h , in accordance with the previous theorem this

hypothesis is rejected whenever the statistic Zn1,...,nq
exceeds the 1−α quantile

of the chi-square distribution with (q − 1)(hk − h(h+1)
2 ) degrees of freedom.
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3. Lemmas and proofs

����� 3.1� Suppose that Σ is a symmetric k × k matrix and its spectral de-
composition is described in (2.1), (2.2). Let j be a fixed integer from {1, . . . , k}
and λj be a simple eigenvalue of Σ. There exist a neighbourhood U ⊂ R

k(k+1)/2

of the point v(Σ), and a continuously differentiable mapping p̂j = p̂j(v(Σ
∗)) of

the argument v(Σ∗) ∈ U taking values in R
k, such that the following statements

(I)–(III) are true.

(I) Let Σ∗ be a symmetric k × k matrix. If v(Σ∗) ∈ U , then Σ∗p̂j(v(Σ∗)) =
λ∗j p̂j(v(Σ

∗)), where λ∗1 ≥ · · · ≥ λ∗k denote the eigenvalues of Σ∗.

(II) p̂j(v(Σ)) = pj and ‖p̂j(v(Σ∗))‖ = 1 for all v(Σ∗) ∈ U .

(III) Let {Sn}∞n=1 be symmetric random matrices and
√
n(Sn − Σ) = OP (1) . (3.1)

If v(Sn) ∈ U , then for t = 1, . . . , k the difference of coordinates

p̂tj − ptj = vec(pjet
′Cj)

′ vec(Sn − Σ) + oP (n
−1/2) , (3.2)

where the matrix Cj = (λjIk −Σ)+ and the abbreviated notation p̂j = p̂j(Sn) is
used.

P r o o f. According to [7, Theorem 7, p. 158] (cf. also [5, Formula (15.3),
p. 565]) there exist a neighbourhood U ⊂ R

k(k+1)/2 of the point v(Σ) and a
continuously differentiable R

k valued mapping p̂j = p̂j(v(Σ
∗)) of the argument

v(Σ∗) ∈ U such that (I) and (II) of this lemma hold and

∂p̂j

(
v(Σ∗)

)

∂v(Σ∗)
=

(
λ∗jIk − Σ∗

)+ ∂Σ∗

∂v(Σ∗)
p̂j

(
v(Σ∗)

)
. (3.3)

Hence if v(Sn) ∈ U then by the Taylor expansion and (3.1) the difference of
coordinates (the argument of the mapping is omitted)

p̂tj − ptj =

k∑

r=1

k∑

w=r

∂ptj
∂Σrw

(
Sn,rw − Σrw

)
+ oP (n

−1/2) . (3.4)

Since the matrices Sn, Σ are symmetric and

∂Σ

∂Σrw
=

{
ere

′
r r = w ,

ere
′
w + ewe

′
r r < w ,

from (3.3) and (3.4) after some computation one obtains (3.2). �

P r o o f o f T h e o r e m 2.1. Since all the h largest eigenvalues of Σ are simple,
the assumptions of Lemma 3.1 hold for j = 1, . . . , h, from which (I) can be easily
proved.
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Suppose that the assumptions of (II) are fulfilled. Then (RC II) and the
central limit theorem imply that

√
n(vec(Sn)−vec(Σ)) converges in distribution

to Nk2(0,W ), which together with delta method and (III) of the previous lemma
yields (2.5) – (2.7). �

P r o o f o f T h e o r e m 2.2. Suppose that g ∈ R
k(k+1)/2 is a non-zero vector.

Since g′V g = E{h(X)}, h(x) =
{
g′v

(
(x−µ)(x−µ)′

)
−g′v(Σ)

}2

, it is sufficient

to prove that the function ξ(y) = g′v(yy′) − g′v(Σ) equals zero on a set of
Lebesgue measure zero. Since ξ is a polynomial in coordinates of y, acccording
to [10, Lemma] this is true if there exists a vector y ∈ R

k such that ξ(y) = 0.
To prove this assume that ξ is the zero polynomial, i.e.,

g′v(yy′) = g′v(Σ) (3.5)

for each y ∈ R
k. Label by gjr the coordinate in g on the position, corresponding

in v(Σ) to Σjr. Plug ej and 2ej into (3.5). Then g′v(Σ) = gjj = 4gjj, gjj = 0
and g′v(yy′) is identically zero. Thus for 1 ≤ j < r ≤ k the equality 0 =
g′v{(ej + er)(ej + er)

′} = gjr holds and g is a zero vector, which contradicts the
assumption. �

P r o o f o f T h e o r e m 2.3. According to [8, (3), p. 49] the equality vec(A) =
Dkv(A), where Dk is the duplication matrix, holds for every symmetric k × k
matrix. Therefore vec((X−µ)(X−µ)′) = Dkv((X−µ)(X−µ)′), which implies
that the asymptotic covariance matrix in (2.5) is given by the formula

Mh = FV F ′ , F =
(
F ′
1. . . . , F

′
h

)′
, Fj = ΓjDk , j = 1, . . . , k, (3.6)

where Γj is defined in (2.7) and V is the matrix (2.10). But according to the
assumptions the matrix V is symmetric and positive definite, which together
with (3.6) means, that M (Mh) = M (FV 1/2) = M (F ). Further, let Z be a
random vector which is Nk(µ,Σ) distributed. Since the matrix Σ is assumed
to be non-singular, this normal distribution possesses a density with respect
to the Lebesgue measure. Hence according to Theorem 2.2 the matrix Ṽ =

var
{
v
(
(Z−µ)(Z−µ)′

)}
is non-singular, and by the preceding argument for the

asymptotic covariance matrix M̃h of the first h eigenvectors computed from the
random sample from the normal Nk(µ,Σ) distribution the equality M (M̃h) =

M (F ) holds. Thus M (Mh) = M (M̃h) and we shall assume without the loss
of generality that X is normally distributed. Under this assumption the matrix
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Mh can be expressed in the block notation by the formula

Mh = (Mh,st) , s, t = 1, . . . , h , Mh,st =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k∑

w=1
w �=s

gswpwp
′
w s = t ,

−gstptp′s s = t ,

gsw = λsλw

(λs−λw)2
.

(3.7)
We remark that this formula can be obtained either directly from (3.6), or from
results of [1], in the case that all the eigenvalues of Σ are distinct, from [9,
Theorem 8.3.3].

To make the notation more concise, put bj(x) = e
(h)
j ⊗ x, bj,r(x, y) = bj(x) +

br(y). Since the vectors br(pj), 1 ≤ r ≤ h, 1 ≤ j ≤ k span R
kh, for matrix (3.7)

the equality

M (Mh) =
〈{Mhbr(pj) : r = 1, . . . , h, j = 1, . . . , k}〉 (3.8)

holds. Now denote by the notation x ∼ x∗ the fact, that there exists a non-zero
constant c such that x = c x∗. Then for r = 1, . . . , h

Mhbr(pj) =

⎧
⎪⎪⎨

⎪⎪⎩

bjr(−gjrpr, gjrpj) ∼ bjr(pr,−pj) j = 1, . . . , r − 1 ,
0 j = r ,

brj(grjpj ,−grjpr) ∼ brj(pj,−pr) j = r + 1, . . . , h ,
br(grjpj) ∼ br(pj) j = h+ 1, . . . , k ,

which together with (3.8) yields (2.11).

Since the proof of the formula for rank is similar in both cases, assume that
1 ≤ h < k. If

h∑

j=1

( h∑

r=j+1

αjrbjr(pr,−pj) +
k∑

r=h+1

βjrbj(pr)
)
= 0 ,

then α12 = · · · = α1h = β1h+1 = · · · = β1k = 0 and

0 =

h∑

j=2

( h∑

r=j+1

αjrbjr(pr,−pj) +
k∑

r=h+1

βjrbj(pr)
)
.

Thus in this fashion the nullity of all coefficients αjr, βjr can be obtained and
the rest of the proof is obvious. �

����� 3.2� Suppose that the assumptions of Theorem 2.1 are fulfilled and
(cf. (2.4))

τ̂ =
(
v(p̂1p̂1

′)′ , . . . , v(p̂hp̂h′)′
)′
, τ =

(
v(p1p1

′)′ , . . . , v(phph′)′
)′
.
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Then, as n→ ∞, the convergence in distribution (cf. (2.18)), (2.6)
√
n(τ̂ − τ) → N(0,Ψh) , Ψh = ∂

(
p1, . . . , ph

)
Mh ∂

(
p1, . . . , ph

)′
(3.9)

holds. The column space and the rank of this matrix fulfil the relations

rank(Ψ) = rank(Mh) , M (Ψh) =
{
∂
(
p1, . . . , ph

)
x : x ∈ M (Mh)

}
. (3.10)

P r o o f. Since the equality
(

∂ vec(pp′)
∂p(1) , . . . , ∂ vec(pp′)

∂p(k)

)
= (Ik ⊗p)+(p⊗ Ik) holds,

(3.9) can be easily proved by means of (2.19), delta method and Theorem 2.1.
Further, since the matrixMh is symmetric and positive semi-definite, the second
equality in (3.10) obviously holds. Hence the first formula of (3.10) will be
proved by showing that for any non-zero vector p ∈ R

k in the notation (2.18)
the implication D+

k ∂(p)y = 0 =⇒ y = 0 is true. However, this can be verified by
means of the fact, that the equality Bj∂(p)y = 0, where Bj is the matrix from
(2.20), is equivalent to

2pjyj = 0, pj+1yj + pjyj+1 = 0, . . . pkyj + pjyk = 0 .

�

����� 3.3� Let M
(i)
h , Γ

(i)
j , W (i) be the quantities defined in (2.6), (2.7) by

means of X = X
(i)
1 (i.e., M

(i)
h is the asymptotic covariance matrix of eigenvalues

of S
(i)
ni ). Put (cf. (2.18), (2.23))

Ψ
(i)
h = ∂

(
p
(i)
1 , . . . , p

(i)
h

)
M

(i)
h ∂

(
p
(i)
1 , . . . , p

(i)
h

)′
. (3.11)

(I) The convergence

M̂
(i)
h →M

(i)
h , Ψ̂

(i)
h → Ψ

(i)
h (3.12)

holds a.s..

(II) Let
âi → ai , i = 1, . . . , q , (3.13)

and Ψ =
q∑

i=1
aiΨ

(i)+
h . Suppose that for j = 1, . . . h the vector p

(i)
j = pj does not

depend on the population index i. Then (cf. (2.22))

rank(Ψ
(1)
h ) = · · · = rank(Ψ

(q)
h ) = rank(Ψ) = r (3.14)

and a.s.

Ψ
(i)

h → Ψ
(i)+
h , Ψ

+ → Ψ+ . (3.15)

P r o o f.

(I) Since S
(i)
ni → Σi a.s., the convergence p̂

(i)
j → p

(i)
j holds for j = 1, . . . , h

almost surely and the convergence Ĉ
(i)
j → (λ

(i)
j Ik−Σi)

+ can be proved similarly

as in the proof of Lemma 3.1. Hence the first convergence in (3.12) can be easily
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established by means of the law of large numbers, the second one follows from
the first one.

(II) Since M
(i)
h is symmetric and positive semidefinite,

M (Ψ
(i)
h ) = M

(
∂(p1, . . . , ph)M

(i)
h

)
.

Hence by Theorem 2.3 the equalities M (Ψ
(1)
h ) = · · · = M (Ψ

(q)
h ) hold, the di-

mension of this linear space equals r and since
q∑

i=1
aiΨ

(i)+
h � aiΨ

(i)+
h in the sense

of positive definitness, the validity of (3.14) is obvious. Further, similarly as in
(3.6) put

F̂
(i)
j = Γ̂

(i)
j Dk ,

where Dk is the duplication matrix. Then the (j, r)th block of the matrix (2.16)

Γ̂
(i)
j Ŵ (i)Γ̂(i)

r
′ = F̂

(i)
j V̂ (i)F̂ (i)

r
′ ,

where with the notation Ui,m = v
((
X

(i)
m −X

(i))(
X

(i)
m −X

(i))′)

V̂ (i) =
1

ni

ni∑

m=1

Ui,mU
′
i,m − v(S(i)

ni
)v(S(i)

ni
)′

is the sample counterpart of (2.14). Hence if the matrices V̂ (i), S
(i)
ni are non-

singular, then similarly as in the proof of Theorem 2.3

M (M̂
(i)
h ) =

〈{ bj,r(p̂(i)r ,−p̂(i)j ) : 1 ≤ j < r ≤ h}
∪ {bj(p̂(i)r ) : 1 ≤ j ≤ h , h+ 1 ≤ r ≤ k }〉 ,
rank(M̂

(i)
h ) = rank(M

(i)
h ) = r . (3.16)

But the matrix V̂ (i) is computed from the random sample of size ni and therefore
by the law of large numbers V̂ (i) → V (i). Since the limiting matrix is non-
singular, (3.16) holds a.s. for all u sufficiently large. But similarly as in the
proof of Lemma 3.2

rank(Ψ̂
(i)
h ) = rank(M̂

(i)
h ) = r = rank(Ψ

(i)
h ) ,

and by (3.12) and (3.13) almost surely Ψ̂
(i)+
h → Ψ

(i)+
h , Ψ̃ → Ψ. Further, λ̃r >

λ̃r+1 a.s. for all n1, . . . , nq sufficiently large, which together with (3.14) means
that π → π a.s., where π is the projection on the linear space M (Ψ). Thus a.s.

Ψ
(i)

h = π Ψ̂(i)+ π → πΨ
(i)+
h π = Ψ

(i)+
h , Ψ = π Ψ̃π =

q∑

i=1

âiΨ
(i)

h → Ψ ,

and since by (2.22) rank(Ψ ) = r = rank(Ψ) for all sample sizes n1, . . . , nq
sufficiently large a.s., also the second convergence in (3.15) holds. �
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P r o o f o f T h e o r e m 2.4. Suppose without the loss of generality that also

all assumptions of the previous lemma are fulfilled. Obviously
q∑

i=1

âiψ
(i)

h =

π Ψ̃π = Ψ and M (ψ
(i)

h ) ⊂ M (ψ ). Therefore ψ
(i)

h = ψ
(i)

h ψ
+
ψ and for τ

(1)
h =

τ
(2)
h = · · · = τ

(q)
h = τ the equality

q∑

i=1

ni(τ̂i − τ)′ ψ
(i)

h = n(τ − τ)′ ψ

holds. Now if ξi =
√
ni(τ̂

(i)
h −τ), ξ = (ξ′1, . . . , ξ

′
q)

′, then by means of these results

Zn1,...,nq
=

q∑

i=1

ξ′i ψ
(i)

h ξi − n(τ − τ)′ Ψ(τ − τ)

=
q∑

i=1

ξ′i ψ
(i)

h ξi −
q∑

i=1

q∑

j=1

√
âiâj ξ

′
i ψ

(i)

h Ψ
+
ψ
(j)

h ξj .
(3.17)

The convergence in distribution (cf. (3.11))

ξ → N(0, G) , G = diag(Ψ
(1)
h , . . . ,Ψ

(q)
h ) (3.18)

follows from Lemma 3.2. Further, combine (3.13), (3.17), (3.15) and (3.18) to
establish that Zn1,...,nq

= ξ′Aξ + oP (1), A = H − C, where the block diagonal

matrix H = diag(Ψ
(1)+
h , . . . ,Ψ

(q)+
h ) and the (i, j)th block of the matrix C is

Cij =
√
aiajΨ

(i)+
h Ψ+Ψ

(j)+
h . Therefore, by means of (3.14), the trace

tr(HG) =

q∑

i=1

tr(Ψ
(i)+
h Ψ

(i)
h ) = qr , tr(CG) =

q∑

i=1

tr(CiiΨ
(i)
h ) = tr(Ψ+Ψ) = r .

(3.19)
Since (3.18), (3.19) hold and the matrix AG is idempotent, the rest of the proof
can be carried out by means of [11, Theorem 9.2.1]. �
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