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ASYMPTOTIC DISTRIBUTION OF
THE LIKELITHOOD RATIO TEST STATISTIC
IN THE MULTISAMPLE CASE

FRANTISEK RUBLIK

ABSTRACT. Classical results on asymptotic distribution of the likeli-
hood ratio test statistic are extended to multipopulation setting. The as-
sertions include a statement on asymptotic distribution in the case of linear
hypotheses and a statement on asymptotic distribution for the hypothe-
ses approximable by cones. The later framework includes usual smooth
hypotheses and is dealt with under validity of local alternatives.

1. Introduction and the main results.

Suppose that probabilities { P,; v € Z} are defined by means of densities
{ f(x,v); v € £} with respect to a measure v on (X,S). Let

L(w, ..., 20, Q) = sup { [] f(zi,7); v € Q}. (1.1)
i=1
According to the classical Wilks’ result
L(zy,..., 20, 2) | — 9
21 P 1.2
e AL (12

as n — oo, provided that = C R™, ~ belongs to Q@ = {v € Z;v = 0,...,

7k = 0}, log denotes the logarithm to the base e and certain regularity con-
ditions are fulfilled. It is also well-known that (1.2) holds with a more general
hypothesis Q = {y € Z; g1(y) = 0,...,9x(y) = 0} provided that the underlying
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functions possess continuous partial derivatives which form a full rank matrix. The
proof can be found e.g. in Section 6e.3 of [9], on pp. 240 — 242 of [11] or on pp. 156
— 160 of [12].

However, the mentioned results do not cover the variety of the testing problems
when sampling is made from several populations and a hypothesis on the overall
parameter is tested. These multipopulation hypotheses have to be handled from
case to case, because in typical situations sample sizes from individual populations
are not mutually equal and therefore the i.i.d. scheme cannot be employed for
finding the limiting distribution.

The aim of this paper is to provide general assertions of the type (1.2) in the
multipopulation case. Throughout the paper we assume that ¢ > 1 is an arbitrary
but fixed positive integer denoting the number of underlying statistical populations.
The parameter space of overall parameters is the g-fold Cartesian product

— =9
0 =x1,

where in 6 = (6],...,6])" € © the symbol 6; stands for parameter of the jth
population and the superscript 7 denotes the transpose of the vector. The outcome
of the sampling from the jth population will be denoted by

z(j,n;) = (xgj),...,x%)). (1.3)
Thus
x(nh...,nq) - (.’,U(l, nl)a e 7x(q7 nq)) (]‘4)

is the pooled sample and its distribution is the product measure
Py = Py L x PR (1.5)

where Pé 7 is the product measure of n; copies of ng.
The asymptotic results of the paper are based on the assumption that

n; — 400, j=1,...,q. (1.6)

Here it is tacitly assumed that n; = n ) denotes sample size from the jth population
in the u-th experiment, u = 1, 2,. and the limits in (1.6) are related to u tending
to infinity, but to avoid abundant indexing the index of the order of the experiment
is omitted.

For 2 C O let

L((n,.....ng), 1) = sup {H II f (= () ,0;); (0,...,6)" € Q} : (1.7)

Jj=1li=1

It will be shown in various settings that under validity of (1.6) the weak convergence

L(.T(n ng)
21 Lot plrn 2 1.8
£ l Og L(l’(nl’ 7nq)’ QO ‘ 0 ‘| — Xs ( )
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or

L(x(nl ..... nq)yﬂl) (n1ye-sy nq)‘| 2
L | 21og AETRN ‘ P, X (1.9)
holds, where x? denotes the chi-square distribution with s degrees of freedom.

Methods of the proofs used in this paper are based on the fact, that the logarithm
of the likelihood ratio is asymptotically equivalent to the difference of distances of
the MLE from the hypotheses, which was in the one sample case for hypotheses
sequentially approximable by disjoint cones established in the proof of Theorem 1
in [4]. One of the tools which we use in the proofs is a multipopulation variant of
the Chernoff lemma, presented in Lemma 2.3. Asymptotic distribution of the LR
statistics in the case of linear hypotheses is the topic of Theorem 1.1 and is derived
by means of the weak convergence result presented in Lemma 2.5. A general class of
hypotheses which includes also the hypotheses of order restrictions studied in [13],
is handled in Theorem 1.2. The asymptotic distribution of the LR statistics in the
case of the smooth hypotheses is the topic of Corrolary 1.2 and is derived by means
of the sequential approximation result of Lemma 2.9.

The probability densities will be subjected to the following regularity conditions.

(C 1) Z is an open subset of R™, for each x € X there exist partial derivatives

0*f(z,7) -
—_ ,7=1,....m
07:07;
and they are continuous on =.
(C 2) The equalities
2

07107,
hold for ally € = and i,7 =1,...,m.

(C 3) The function f(.,.) is positive on X X = and for each parameter v € =
there exist a P, integrable function h, and a neighbourhood U, C = of the point v
such that the inequality

0? log | (357 ’Y*)
— =22 < ho(x
| 8%*8’7; N 7( )

holds for all v* € Uy, x € X andi,j =1,...m.

(C 4) For every v € Z the function
dlog f(x,7) _ (a log f(x,7)  0log f(x,w)T
Oy on T O
belongs to Lo(P.,) and the matriz

30y = (Ev(alogf(x,v) 0 log f(,) )>m_

1.10
Vi v, (1.10)
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is positive definite and continuous on Z=.

(C 5) There exist measurable mappings 4, : X" — Z such that for each param-
eter v € Z and every real number € > 0

lim P Lz, .. 20, 5) = L@, @, A, 1)) ] = 1, (1.11)

n—oo

lim P [|[An (1, ... 20) — ]| >¢]=0.

n—oo

We remark that the symbol E, in (1.10) relates to the measure P.,.

Theorem 1.1 Suppose that (C 1) - (C 5) and (1.6) hold, and
QZ‘:{QGG; Aié’:bi},
where A; is a k; X mq matriz, rank(A;) = k; and b; is a vector from R¥. Let 0 € Qg

and for 1= 0,1 there exist measurable mappings éﬁfl) ng = éﬁfl) _____ ng(T(n1,..nq)) Of the
argument T, . n,) taking values in €; such that

-----

.....

Pe(m ..... nq)[ L($(n1 ..... ng)» Qz) = L(‘T(m ..... nq)’é;il) ,,,,, nq(x("l ----- nq))) ] — 1 (1'12)

P@(?u ,,,,, nq)[ ||‘§§Lll) ..... ny 0” > g] — 0. (113)

(I) The weak convergence (1.8) of distributions holds with s = ky.
(I1) If Qo C Q1 and ko > ki, then the weak convergence (1.9) of distributions
holds with s = kg — ky.

An immediate application of the previous theorem yields the following assertion.

Corollary 1.1 Let the homogeneity hypotheses

where for the overall parameter 0 = (6L, ... ,HqT)T € O either forall j =1,...,q

the equality p; = 0; holds, or 0; = (uf,UJT)T denotes partition of the jth popula-
tion parameter into the subvectors pi; € RP and o; € R™P (thus in the first case

5-1) T 5»2) T denotes

partition of the subvector p; into the subsubvectors ugl) € RP* and u§2) c RAiM(u;)—p1

dim(pj) = m and in the second case dim(p;) = p). Let p; = (p

580



Suppose that (C 1) - (C 5) and (1.6) hold and the assumptions of the previous the-

orem concerning éﬁfl)nq are fulfilled.
(I) The convergence (1.8) holds with s = (g — 1)dim(p;).
(II) The convergence (1.9) holds with s = (¢ — 1)(dim(u;) — p1).

We remark that if in (C' 4) the assumption of continuity of J(7) on Z is omitted
and in (C 2) also the validity of

/Wdy(x)zo, i=1,...,m (1.14)
i

is assumed, then all assertions of this paper remain true. However, the present form
of the conditions makes possible to use the local asymptotic normality theory of
Le Cam, Ibragimov and Hasminskii in the form expounded in [2], which simplifies
the proofs of contiguity assertions. We remark that in comparison with [6], the
conditions (C 2), (C 3) are less stringent than their counterparts ( R 2), ( R 3)
ibidem, and no assumption on the Kullback-Leibler information quantity is here
included. In difference from various sets of classical regularity conditions, used for
example in Section 4.4.2 of [12], in Section 6e of [9] or on pp. 88 of [1], the present
conditions (C' 1) - (C' 5) do not require existence of the third partial derivatives of
the densities. Also, they do not include the integrability of a higher power of partial
derivatives of logarithm of the density, imposed in the condition C'in [5].

A deeper insight into limiting behaviour of the test statistic can provide its
asymptotic distribution when the true parameter tends to the null hypothesis, usu-
ally the rate proportional to the square root of the sample size is considered. Such
an approach is for the likelihood ratio test statistics in the one sample case used in
[6] for the hypotheses approximable by disjoint cones, and in [5] for the hypothesis
of nulity of a part of the parameter. Multipopulation versions of these results are
presented in Theorem 1.2 and in Corollary 1.2, the local alternatives are in their
proofs handled by means of contiguity properties.

Following [6] and [4] we shall say that a set Q@ C © is at 6 € Q sequentially
approzimable by the cone C if for every sequence {a,}>2; of positive numbers which
converges to zero

sup { p(6%,0+C); 0" € Q, 0" = 0]l < an} = olan).

sup{p(0 +y,Q); y € C, [lyll < an}=o(an). (1.15)

Here

lzll = Q22D)?, p(2,8) =inf { ||z -yl y € S} (1.16)

is the Euclidean distance from the set S, and by the cone C' we mean any closed
convex set such that ax € C whenever x € C' and the real number « is nonnegative.
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For 6 = (6],...,0])" € © the block diagonal mq x mq matrix

J(0) = diag(J(6y), ..., 3(0,)) (1.17)
denotes the overall Fisher information matrix whose blocks are defined by (1.10),

mi(0) =m0 ....0)") =0; (1.18)
is projection onto the jth coordinate space and h = (71 (h)7, ..., m,(h)T)T describes

decomposition of the vector h € R™? into the subvectors from R™. Finally, the
number
n=n;+...+n,

denotes the total sample size, i.e., n = n(* where u is the order number of the
experiment.

Theorem 1.2 Let (C 1) - (C 5) be fulfilled, (1.6) hold and
n; :
#—>pj€(0,1>, j=1,...,q. (1.19)

Suppose that 6 € © s a fived parameter, for 1 = 0,1 the set ); C © contains 6,
is at 0 sequentmlly approzimable by a cone C; and there exist measurable mappings

0(1 ..... ng = 0 ..... N (x(nl _____ nq) ) of the arqument x(y, . n,) taking values in €; such that
both (1 12) holds and (1.13) is true for every ¢ > 0. If
uh_)rgo h,=he R™ (1.20)

and the product measure corresponding to the u-th experiment

P =P =P x. .. x P, y(u) =m0) + ]((u)) , (1.21)
n:
J
then
L(zn,,..nq), $11) ] 2 2 1
21o Lot 22 P — 2, Go) — p*(2,G1) | N(J(0)h, I;ng)|.
L B nq))go)ﬂ L [p*(x,Go) = p*(x,G1) | N(3(0) a)]
(1.22)
Here p is the distance (1.16) from the set G; = J(6)Y2D(p)"*C; and
D(p)'? = diag(py”*,. ... ;" 0y %y P a2 py?) (1.23)

denotes the diagonal mq x mq matriz with this diagonal. Especially, if Co C C1 are
linear spaces, then

L 210g L('T(m ,,,,, nq)’Ql) ’P*] —_— XQ()\), (1'24)



where s = dim(Cy) — dim(Cy) and the noncentrality parameter of the chi-square
distribution

A= p*(J(0)*h, Go) — p*(J(0)'/*h, G1) . (1.25)

The previous theorem implies the following assertion, in which C; denotes the
class of mappings whose components have on their domain all partial derivatives of
the first order continuous. In (1.27) the symbol 6; stands for the ¢-th coordinate of
the vector § € R™4.

Corollary 1.2 Suppose that (C 1) - (C' 5), (1.6) and (1.19) hold,
0 ={0"€0; 1(0")=0,...,9:,(0") =0}, (1.26)

and the functions g; - © — R' belong to Ci. Further, assume that for i =0, 1 the
parameter 6 belongs to €);, the matriz

991(0) 991 ()
20, 7 00y,
9i(0) = : : (1.27)
20, 7 7 00y,
1s of rank k; and the assumptions of the previous theorem concerning éﬁfl) ..... ng 4T€
fulfilled. Let (1.20) hold and P* be the probability defined in (1.21).
(1) The convergence
L(z@s,..n,): ©) ]
21lo L P — X3 (A
£ g L(I‘(nl ..... nq),QO) ‘ Xk‘o( )
holds with
A=hTFI(FoJ(0) 'R "Foh,  Fo=8o(0)D(p) /% . (1.28)

(II) If ky < ko (and therefore Qg C ), then (1.24) holds with s = ko — k1 and
A= h" R (FoJ(0)'F))'Fy — F{ (FLJ(0)'F{)'Fy| h, Fi=a:1(0)D(p)”"".
(111) If for the relative sample sizes the inequality liminf, .. ng-u)/n(“) > 0 holds
for 5 =1,...,q and if the vector h = 0, then the results on limiting distributions in

the assertions (1) and (II) are valid with A = 0 provided that their assumptions with
the exception of (1.19) remain true.
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2. Proofs.

Lemma 2.1 Let (C'1)- (C 4) be fulfilled. Then (1.14) holds and fori, j=1,...,m

32hx;L(x,7)>

2.1
8%‘3% ( )

J()ij = — B, (

Proof. (I) Validity of (1.14) follows from Proposition 1 and the relation (8) on
pp. 13 = 16 in [2], validity of (2.1) immediately follows from (1.14) and (C 2). O
Since sampling with the sample sizes n; = n§u) is carried out in the sequence of

experiments whose ordering is denoted by v = 1,2, .. ., for the sake of simplicity the
pooled sample will be denoted by the symbol (cf. (1.4), (1.3))

l’(“) = x(ngu) ..... n((zu)) . (22)
In accordance with this and (1.5) let
RO
P = pym ) (2.3)

A basic tool for finding stochastic order of the remainder term in the concerned
Taylor expansion will be in this paper the next assertion.

Lemma 2.2 Suppose that (C 1) - (C' 4) hold and using the notation (1.1), (1.10)

for v € Z put
Il IV =<0, ij=1,...,m

~ sup {
(2.4)

(I) The function d(.,7,0) is measurable and for every e > 0 there exists a real
number § > 0 such that

d(l’l, vy Ty Y, 6)
1Plog L1, .-+, 0y 7*)
n 005

lim P [d(x1, ..., 20,7,0) > €] =0.

n—oo v

(I) If (1.6) holds, 6 € © and measurable real-valued functions ¥, = b, (™)
converge to zero in the probabilities (2.3), then ( cf. (1.18))

lim P [d(2(j,nf"),0;,¢u(z™)) > 2| =0

uU— 00

forall j =1,...,q and every € positive.

Proof.
(I) The measurability follows from continuity of the partial derivatives and sep-
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arability of R™. Let

0*log L(x,v*)  9*log L(z,7)
OOy 07i0;

g(x7775>zsup ,H")/*—’}/HS(S, iajzla"-vm

By (C 1), (C 8) and the Lebesgue theorem
6lirgl+/g(x,%5) dP.(z) =0,

and given ¢ > 0 there is a positive number ¢ such that E, (g(.,v,6)) < 5. Employing
the law of large numbers we obtain that for such a number §

Pv(n) [d(xy, ..., 20,7,0) > €]

—ml1&
= Pfy ) [nzg<xl7775) >
i=1

as n — 00, because (2.1) holds.
(IT) Let € be a fixed positive number. According to (I) there exist positive real
numbers 0; and N(j,t) such that

5 (1)

+ P,

—>O

d<x17"'7xn7’770) >

Do ™
Do ™

Fg(n)[d(l'l, e ,l’n,ej,éj) > 8] <

J

1
t

foralln > N(j,t). Further, since (1.6) holds, given sequences {ng-u)};jozl, j=1,...,q,
there exists an increasing sequence {u, }3°, of positive integers such that for all u > w,

1
n —
t

j=n > NG, Pl (e™) > 6] <

Hence Pg(“)[d( (, )y 0,1, (zW)) > ] < 2/t for all u > u,. O

In the next considerations we shall use the notation

Plog L(z1, ..., x07)\
] 4,j=1

(2.5)

The matrix
B(«,0) = diag(B(r(1,n{"),m(0)),....B(z(g.n{"), m(6))  (26)

is the mq x mgq block diagonal matrix whose blocks are defined by means of (2.5)
and (1.18). Finally, let

Dy, = diag(Vn(, ..., \/n, /., AR ey @

denote the diagonal mg x mqg matrix with this diagonal.
The following lemma is a multisample version of Lemma 1 in [4].
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Lemma 2.3 Suppose that (C'1) - (C 4) and (1.6) hold, 0 € Q2 C © and measurable
mappings 0, = 0, (™) taking values in Q are such that (cf. (1.7))

lim P( )[ L(x (u),Q) = L(x(u)aeu(x(u))) ]=1.

uU—00

Let 6, — 6 in probabilities (2.8) as u — oo. Then the random vectors
ey (Bule®) — 0)

Ay(z™) = : = Dyu(0,(z™) —0)

nd" 7Tq<(§ (z) — 9)

are bounded in probabilities P = Pe(u), i.e., Ay(zW) = O,(1).

Proof. Choose a number § > 0 such that {§* € R™; ||0* — || <} C © and put

Ay = {5 L™, Q) = L(a™, 0,(z™) ), [0u(z™) =] <3} .

An application of the Taylor theorem yields that for every z® € A,

log L(x, d,)
dlog L(z™, 0)
00

where [|6* — 0|| < [|0, — 6| and (cf. (1.17))

= log L(z™, 0) + (0, —6) + ;(éu —0)TB(=™,6)(0, — 0), (2.8)

S0~ OB, 0)(0, — 0) = — AL TIOAEY) +2). (29)

Making use of the Cauchy-Schwarz inequality and the notation (2.4) we get the
inequality
za(@)] < Au(@™)[PSu(=),
g o i (2.10)
Su@®@) = S m2d(z(j,n"), m;(0), 6. —0])) -
j=1
However, Lemma 2.2(I) implies that S, () = 0p(1), which together with (2.8) —
(2.10) means that on A,
L(z®,4,)
0 < log = "%
= 98 Tz g)

og L(z®.0)" -
<& gLa(e ) (Bu=6) — S A& @) IO AL) + [ Aule)P0,(1) . (211)
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Finally, let A stand for the smallest characteristic root of J(#). Then from (2.11) by
means of (C' /) and the central limit theorem we obtain that on A,

“ A _,0log L(z™ 0 “
T R B e e G

= Op(1)[|Au(=™)],
and since Pe(u) (A,) — 1 as u — oo, the rest of the proof is obvious. 0

The statements (2.12), (2.13) of the next corollary are well-known properties
of the maximum likelihood estimators and have been proved under various sets of
conditions. The set of conditions (C' 1) - (C 5) differs in some way from currently
used ones, amongst which one can mention the conditions used in [6], [§], in chapter
4 of [12], the conditions in Section 6e.1 in [9] or the ones used on p. 88 in [1]. For
the sake of completeness we therefore prefer to include the proof of the following
corollary into the text.

Corollary 2.1 Suppose that the conditions (C 1) - (C 5) are fulfilled. Then for the
mazximum likelihood estimator 4, from (C'5) and for every parameter v € =

1L 610g L(-fljla e ,.Tn,’}/)

Vi(An(@y, . xn) =) =J(y)” NG By

+op(l),  (2.12)

where P = Fv(n). Hence the weak convergence to the normal distribution

LIV, =) PM] = N(0,3(3)7) (2.13)

holds as n — oo.

Proof. Since 4, — < in probability, the Taylor theorem and (1.11) imply that
with probability P = Pv(n) tending to 1

lalOgL(l‘h"wxna’y) _ l = 8210gL(I1,...7ZL’n7/}/:> N R :
- G nZ 7 (N0 () (Y(J) = %)),

Jj=1

where a(j) denotes the jth coordinate of @ and || vf —~| < ||9» — v |]. Thus

10log Ly, ..., an,7)
n o0

= I =) + 221, 20), (2.14)
|zn(z1, s xn)|] < Splxy, s zn) A — |
Sn(xly e 71'77,) = m2d(l’1, ey Iy Y, H’Ayn — ’YH) s
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and d is defined in (2.4). But according to Lemma 2.2 and Lemma 2.3

Ay, TV A — 7l = 0p(1), Vn(An(xe, ... 2,) — ) = Op(1),

and we see that z,(21,...,2,) = op(n~2). The rest of the proof follows from (2.14)
and the central limit theorem. O

Lemma 2.4 Suppose that the assumptions of Lemma 2.3 are fulfilled, (C' 5) holds,
and put

v(z, K) = inf{|[lz —yllye K}, |llz|l] = /='I(0)z, (2.15)
where J(0) is the matriz (1.17). Let

Oy = (0o 070) (2.16)
where én(_u) = én(‘u) (x(7, ngu))) is the MLE from (C 5).
(I) Let G, denote the set of those ') for which
L™, Q) = L(z™,0,(a™)), |Du(fu(a™)—-0)| <M, (217
L™, 0) = L(2™,0,)(@")), [Du(bu(=™)-0)| < M, (218)

where Dy is defined in (2.7) and M, M are fired positive constants. Then the
relation

~ 1 ~ ~
log L(z™, Q) — [log L(z™), f) — 3 U2(Du9(u), D QW (M) )] ‘ I, () = op(1)
(2.19)
holds with P = P\, QW(M) = {6* € Q; |Du(0* — 0)|| < M} and I, denoting

the indicator function of this set.
(I1) Suppose further that @ = {0 € ©; AO =b}, A is a k x mq matriz of rank
k, b is a vector from RF and C = {z € R™; A2 =0}. Then

N 1 N
log L(x™, Q) — |log L(z™, 0,)) — §v2(Du(9(u) —6),D,O)| =op(1) . (2.20)

Proof.
(I) Since the set © = =7 is open, there is a neighbourhood U of the parameter ¢
such that U C ©. Obviously, Q™ (M) C U and 0,y (z®™) € U for all ) € G, and

all u sufficiently large. Hence for such an integer v and 6* belonging to Q(“)(M ) the
Taylor theorem yields that on G,

x W) A 1 . AT . A
log (2, 0°) = log L(z®),04)) — 5 [Du(6” = )] 3(0) [Du(0" — 6y)] + 2.

(2.21)
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1 * N T — u Hok — * 2
o= (@) = Du(0" = Ow)| DB, 07D + 3(0)] [Du(0” — 0)|
A ) (2.22)
C— 9(u)|| < ||g* — 9(u)||, B is the matrix (2.6) and
IDw(6" = b)|| < IDu(6" = O)|| + [IDu(6 — )l < M + M, (2.23)
167 = 0] < 116" = By | + 11y — 01l < v = [DGH|(M +21M). (2.24)

From (2.22) - (2.24) and Lemma 2.2 one finds out that
q
|2u| < M—i— M) Z z(j,n j ),Hj,au) =op(1),

which together with (2.21) and (2.17) implies (2.19).

(II) Obviously, for all u sufficiently large Q) (M) =60 + {z € C; |Dyz|| < M}
and

~

v?( Dy, DuQ™ (M) ) = v*( Du(fw) — 0), K. , (2.25)

where K, = {z € R™; AD 'z = 0, ||z|| < M }. Let II, be the matrix of pro-
jection on the linear subspace D,C = {z € R™; AD_ 'z = 0} in the norm |||z]||
from (2.15). Then |||IL,y||| < |||lyl|| and with A; denoting the greatest and A,,, the

smallest characteristic root of J(f) the inequalities

VP DBy = )| < [[ITLDu(By = )| < /N1 [Du(Bsy — 0)]
hold. Hence inserting into (2.17) the constant M = 1/A;/Amg M, we see that on G,
V*(Du(lw — 0), K) = v*(Du(fy — 0),Du0). (2.26)

With this choice of M validity of (2.19), (2.25) and (2.26) yields the relation

(@)1, (z™) = op(1), (2.27)

where g, () denotes the left-hand side of (2.20).
Finally, let € > 0 be an arbitrary but fixed real number. If § > 0, then (2.27),
the assumptions on 6, Lemma 2.3 and (C' 5) imply that for M > 0 sufficiently large

limsup Py (g,(«™)| > £) < limsup[1 - F"(G,)] < 6

uU— 00

and the relation (2.20) is proved. O
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Lemma 2.5 Let the distributions { L(&,) Yoo, of p-dimensional random vectors con-

verge weakly to the normal distribution N(0,1,), where I, is the unit matriz. If
{ Wy}, are idempotent symmetric p x p matrices and tr(Wy) = s for all u, then

L& Wul) — X3 (2.28)
weakly as u — 00.
Proof. Assume first that for i, 7 =1,...,p
Tim Wy (i) = Wi, j) (2.20)

where W is a real-valued p x p matrix. Then the functions h,(z) = 2T Wz, h(x) =
2TWz are measurable and since x, — x obviously implies that h,(z,) — h(z),
according to Theorem 5.5 in [3]

L(& Wabu) = L{hu(&)) — L{7(z) [N(0,L;)) .

Taking into account (2.29) we see that tr(W) = lim,, o, tr(Wy) = s and the matrix
W is symmetric and idempotent. This according to Lemma 9.1.2 on p. 169 in [10]
means that £(27 Wz | N(0,1,)) = x? and (2.28) in this case holds.

Let us drop validity of the assumption (2.29). Since the matrices { W, }°°, are
symmetric and idempotent, they are positive semidefinite and for all 7,7 =1,...,p

0< Wy(i,i) <tr(Wy)=s, [Wu(i,j)| < /Wali,i)) Wa(j.5) <s.

Hence every increasing sequence {u, }5°; of positive integers contains a subsequence
{1y, 22, such that the matrices {W,, }£2, converge to a real valued p x p matrix W,
and according to the previous part of the proof £(&] . W, €u,,) — X2 ast — 00,
which proves (2.28). O

Proof of Theorem 1. 1. Making use of (C 5) we obtain that (cf.
(2.16)) )
log L(z"),0) = log L(z", f(u)) + op(1),

where P = Pg(u). This together with (2.20) implies that

L(z®,0)

2 log T, ) - 02(Du(é(u) —0), DuCi) +op(1) = p*(&4, J(0)/*DuCy) + 0p(1),

where C; = {z € R™;A;z = 0}, p is the distance (1.16) and ¢, =
J(0)2Dy (6 — ). Owing to (1.6) and (2.13)

L(&) — N(0,Ing) (2.30)
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as u — oo. Since according to the assertion (i) on p. 23 of [9] the matrix ¥ of
projection on J(6)'/2D,C; is symmetric and idempotent,

L(z™,0) 1w
2 log m =&, WY& +op(1), (2.31)
WO =T — T (D) = dim(I(0)/*D,C)) = mq — ki, (2.32)

and the matrix W is symmetric and idempotent.
(I) This assertion follows from (2.30) -(2.32) and Lemma 2.5.
(IT) By (2.31) and (2.32)

L(Jf(u), Ql)
L(ZE(U), Qo)
where W, = ¥ — w0 But Q, C ©; implies that Cy C C}, which together with

symmetry of the projection matrices leads to the equalities ¥(HNWO = ¥O) —

2 log =& W&, +op(1), (2.33)

UOPM Thus the matrix W, is symmetric and idempotent, and the rest of the
proof follows from (2.30), (2.32), (2.33) and Lemma 2.5. 0

In the following text we shall use the concept of contiguity. We recall that a
sequence { P, }2°, of probabilities is said to be contiguous to propabilities { P¥}5° , if
lim, . P,(A,) = 0 whenever lim,_,., P/(A,) = 0. This is denoted by {P,} < {P;}
and these sequences of probabilities are said to be contiguous, if both {P,} < {P;}

and {P*} < {P,}.

Lemma 2.6 Suppose that (C 1) - (C 4) and (1.6) hold, 6 € O, lim,_,oc hy = h €
R™4, and in accordance with (1.21), (2.3) put P, = Pe(u).

(I) The probabilities { P}, {P}°°, are contiguous.

(I1) If also (C 5) holds, then for the mazimum likelihood estimate (2.16) and the
matrices (2.7), (1.17)

LDu(ly —0)| 2] — N(h.3(0)) (2.34)

Proof. (I) The proof coincides with its one-sample counterpart used for proving
Proposition 3 on p. 17 in [2]. Indeed, let §,) = 6 + D, 'h, and

L(z™,0)
L(:C(“), Q(U)) )

Since by the uniform weak convergence of probabilities one understands that inte-
grals of every bounded continuous function converge uniformly, from Proposition 1
on p. 13 in [2] and from (12) — (14) on p. 16 ibidem one easily finds out that

2

L(A,|Py) — N(— % ,o%), o*=h"J(O)h. (2.36)

Al =log (2.35)
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This together with Le Cam’s first lemma (cf. [2] p. 499) means that {P,} < {P}},
the relation {P’} < {P,} can be proved similarly.
(IT) Let

T

Su(6) = (S, (@1 nf"), m(@) 7., S, (x(a.nf"), m(0) ")

1 dlog f(x;,
Su(@1, .o T, ) Z gf )

and A, = —A’, where A is defined in (2.35). According to Proposition 2 on p. 16
of [2]
1 2
Ao = BESu(0) = SHETO)hy + 0p(1) = WTS,(6) = = + 0p(1).
where P = P, and ¢? is defined in (2.36). This together with (2.12) means that for
a fixed vector g € R™ and T,, = gTDu(é(u) —0)

()= (730 s (0, ) o

Hence L(T, |P’) — N(gTh,g7J(0)"g) by Le Cam’s third lemma (cf. p. 503 in
[2] or [7], p. 208), and (2.34) is proved. O

Lemma 2.7 Suppose that C C RP is a cone, lim,_ .o My = M is a regular p X p
matriz, p = mq and v is the distance (2.15).

(1) If imy oy =y € RP, then lim, o v( Yy, MuC) = v(y, MC).

(11) sup{ |v(y, MuC) —v(y, MC)|; y € K} — 0 as u — oo provided that the
non-empty set K C RP is compact.

Proof. (I) Since |v(y, MuyC) — v(yu, MuC)| < |||y — yul||, we may assume that

Yo = y. But if II, I, denotes projection on MC and M,C respectively, then
II(y) = Mz, I1,(y) = Myz, where z, z, belong to C. Hence

v(y, MuC) < |ly = Muzl[| < v(y, MC) + [[[Mz — Myz|[],

and
lim sup v(y, M,C) < v(y, MC).
Similarly, v(y, MC) < v(y, M,C) + |||Myz, — Mz,]||. But
1Mz, — Mz, ||| < [ 30)]]*[Mu — M| |1z,

-1 -1
lzall < 1 (3O)*Ma) [ Maz ] < 1 (3O)*Ma) [ 11yl]],
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where the last inequality holds owing to the inequality |||IL,(y)||| < |||y]||, following
from Theorem 8.2.5 on p. 376 of [13]. Thus also the inequality

v(y, MC) < liminf v(y, M,C)

U—0o0

holds.

(IT) Let 6, = sup { |v(y, M,C)—v(y, MC)|; y € K }. Since the function v(., A) is
continuous and the set K is compact, there exists a point y, € K with the property
that [v(yy, MuC) — v(yy, MC')| = §,. Choose a subsequence {u;}°, for which

limsup 9, = 1tlim Ouy -
—0Q0

U—00

Since the set K is compact, there exists a subsubsequence {uy, }5°, such that
dim g, =y e K,
and by (I)

limsupd, = lm [0, Moy, C) — (g, MC)|
= |v(y, MC) — v(y, MC)| = 0. 0

Lemma 2.8 Under validity of the assumptions of Theorem 1.2

log L(z™, ;) — |log L(z™, f,)) — 1v?(Du«?(u) - 9>,D<p>1/2a)} = op(1).

2
(2.37)

Here P = PH(U), and v, é(u) and the involved matrices are defined in (2.15), (2.16),
(2.7) and (1.23), respectively.

Proof. Let G, be the set described with (2.17) and (2.18), where 2 = €; and

0, = é(i()u) w- Let e > 0. By means of Lemma 2.3 we ecasily obtain that for all
ny Ng

.....

M, M sufficiently large the inequality limsup,, . [1 — Pe(“)(Gu)} < ¢ holds. Hence

if we show that for the set QM) = {6 € Qi |Du(60* — 6)|| < M} and for M,
M sufficiently large

[0?(Dubuy. D" (A1) ) — v*(Du(f) — ), D(p)*C: ) | I, (z) = 0p(1),

then with g,(x™) standing for the left-hand side of (2.37) we get from (2.19
for every 6 > 0 the inequalities

liLn_)sol;p Pe(u) {|gu($(u))| > 5} < limsup [1 — Pe(u)(Gu)} <e

U—00
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hold, and (2.37) will be proved.

Let
— (u) A1
O (M) = {y € Ci; |Duy|| < || M}
mq

where A; denotes the largest and \,,, the smallest characteristic root of J(#). Ac-
cording to Theorem 8.2.5 in [13], projection on cone does not enlarge the norm,
therefore on the set GG, the equality

) ) AW
v?(Du(0w) — 0), DuC; ) = v*( Du(f) — 0), DT, (M))
holds. Since | [[l[|* = [I[ylI[*| < e+ yll 13O lz =y, for ) € G,

v?( Duby, D" (M) ) = v*(Du(fu) — 0), DuC; )

< supinf  [Du(fu —67) + Dulb — 0 = )| [IO [Du(d +y — 6]
ye@(“)(M) 0™ (M)
- A -
< sup (M M+ | M) IO Dall (6 + 5, QY (A1) (2:39)
vl () ma

Put
nW = n§“) 4+ ...+ né“).

From (1.19) we obtain that for all u sufficiently large

1/2
) BT QM Mgk 2m

sup{ |ly|l; y € C,; (M)} < ||Dy, TMs s Q=2 '
(sl (M)} < IO T2M < e 25 1

Hence employing (1.15) we see that for all u sufficiently large the relations
yeCM), 0 e, pl0+y,0%)<pO+y,Q)+1/n™

imply that

3QM
\/n(u) ’
Du(0” = )| < [Dull 107 = 0]l < 3QM+/m,

and if M > 3QM,/m, then for y € éi(u)(M) the equality p(y + 6,8;) =
p(y+0, QE”)(M ) ) holds. This together with (2.39) and the definition of approxima-

167 =0l < " = (@ + )l + llyll <
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bility means that given M > 0 there exists M > 0 such that for all u sufficiently
large on G,

v?( Duby, D" (M) ) = v*(Du(fu) — 0), DuCi ) < of1). (2.40)
If u is sufficiently large, then for every 6* € Q" (1)

QM

16" =0l < DL ] [Du(0” = 0)|| <

and the distance p(6* — 0, C;) is attained at a vector y € C;, for which

Duyll < IDullllyll < Dyl 16" =0l < QM/m.

Thus similarly as in (2.39) for all u sufficiently large on G,

v?(Du(f) — 0),DuC;) — v*( Dubuy, D (M) )

< v*(Du(f) — 0), DuC (QM/m) ) — v*( Dubuy, DuQL" (M) )
< OM)|Dy  sup  p(6" =0, C(QMm)) =o(1),
6= (41)

where the last equality follows from definition of approximability. Hence (2.40) re-
mains true also when the left-hand side is taken with the absolute value. Finally, let
pDj = ngu) /n™_ j=1,..., qdenote relative sample sizes from particular populations.

Then D,C; = D(f))l/QCi, according to Lemma 2.7

IUQ(Du(é(u) — 9),Du(]i) — UQ(Du(é(u) — 9),D(p 1/2 ) ‘] )) = Op(l)

and validity of (2.38) is proved. O

Proof of Theorem 1.2 By Lemma 2.8,

L(z™, )

Lz, Q)

= *(D (éu) —6),D(p)"*Cy) — v*(Du(fuy —0),D(p)"*C1) + 0p(1)
= p (guaGO) —p (§u7G1) + OP(1)7

where P = P\ and &, = J(0)/*Dy(0) — 0). Since the functions p2(., G;) are
continuous, (1.22) follows from Lemma 2.6.

Further, let Cy C C} be linear subspaces of R™4. Then also Gy C G are linear
subspaces and similarly as in the proof of Theorem 1.1(IT) one easily finds out that

2log

pQ(x7G0) - p2($, Gl) = l’TA.QI,
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where the matrix A = ¥; — ¥y is symmetric, idempotent and ¥; denotes the matrix
of projection on G;. Hence the assumptions of Theorem 9.2.1 in [10] are in this case
fulfilled with ¥ = Lng, p = J(0)Y/?h, which implies that L(zTAz|N(y, X)) =
xX%(N), where the degrees of freedom s = tr(AX) = rank(¥,) — rank(Wq) = k; — ko
and the non-centrality parameter A = T Ap = p(u, Go) — p*(1, G1). O

Proof of the Corollary 1.2 will be based on the following lemma, which probably
does not contain new results, because the involved cones are termed in the literature
as tangent cones. Since the property (1.15) of the sequential approximability was not
previously mentioned in the available literature, we prefer to include the assertion
into the text.

Lemma 2.9 Let © C R™ be an open set.
(I) Let 6 € Q C © and

Qﬂwfz{<néﬂ>;xev},

where W C R™4 is an open set containing 6, V' C R® is an open set, s < mq and
n:V — R™™% belongs to C;. Then Q) is at 0 sequentially approximable by the cone

Zs4+1 21
C =< zeR™; : =d| : : (2.41)
Zmg Zs
where
om (9) o (9)
o e T,
d=d[n] W) = : : (2.42)
Omg—s(9) mg—s(9)
991 0 0T 99,

and 9 = (04, ...,0,)T consists of the first s coordinates of 6.
(11) If the matriz (1.27) is of rank k; and its elements are functions continuous
on ©, then the set (1.26) is al 6 sequentially approximable by the cone

Proof. (I) The proof can be easily carried out by means of the definition of
differentiable real-valued function.

(IT) Since it is only a matter of notation, we may assume that the last k; columns
of (1.27) are linearly independent. Since g = (g1, ..., gr,)" belongs to C; and g(0) =
0, from theorem on implicit functions one obtains that there exist a neighbourhood
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U cC R™= % of (01,...,0me1,)", a neighbourhood V' C R* of (Opgtit1s-- - 0mg)T
and a mapping 7 : U — V belonging to C; such that

W={(@"y ) 2eU,yeV}

is a subset of O, for every x € U the only point y € V satisfying g( (z7,y7)T) =0
is y = n(z) and the matrix (2.42) has for every ¥ € U the form

d[n](ﬁ)z—[D<ngg)>]_lH<ng9)> : (2.44)

Here s = mq—Fk; and 8;(0) = (H(0) D() ) is the partition of the matrix (1.27) into
the blocks determined by the last k; columns. Thus

QiﬂW:{<né)>;x€U}

and (2.44) means that the cone (2.43) equals (2.41). 0

Proof of Corollary 1. 2. The approximating cone Cj in this case
equals (2.43) with i = 0, and putting ; = O, C; = R™? we see that (1.24) holds
with s = mq — (mq — ko),

A= p'(J0)°h,Go), Go={z€R™; Az=0}, A=FoJ(0)"/*.

Since p*(z,Gy) = sTAT(AAT) 1Az, validity of (I) is proved. The assertion (II)
can be proved similarly and validity of (III) is obvious. O
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